Colourful and easy to use, Bartholomew’s maps became a trademark series. The maps were popular and influential, especially for recreation, and the series sold well, particularly with cyclists and tourists. To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first published under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps of Scotland formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. This Bartholomew series at half-inch to the mile, covered Great Britain in 62 sheets in the 1940s, Bartholomew’s first to cover Great Britain at this scale (their previous series covering Scotland and then England and Wales). The series provides an attractive and useful snapshot of 1940s Britain. By this time, Bartholomew had altered the range of information on their maps compared to the 1900s. There were more categories of roads, Ministry of Transport road numbers were added, and new recreational features such as Youth Hostels and Golf Courses. Bartholomew’s topographic information was gathered partly from original Ordnance Survey maps, and partly from information sent in to Bartholomew from map users. One important user community for Bartholomew were cyclists. From the 1890s, Bartholomew entered into a formal relationship with the Cyclists’ Touring Club, then numbering around 60,500 cyclists, proposing that club members supplied Bartholomew with up-to-date information. In return, Bartholomew provided the CTC with discounted half-inch maps. The relationship worked very well, turning CTC members into an unofficial surveying army, feeding back reliable and accurate topographical information which Bartholomew would then use to update their maps. You can read more about this and see selected letters from cyclists at: http://digital.nls.uk/bartholomew/duncan-street-explorer/cyclists-touring-club.html.
Usually Bartholomew made revisions the sheets right up to the time of publication, so the date of publication is the best guide to the approximate date of the features shown on the map. You can view the dates of publication for the series at: https://maps.nls.uk/series/bart_half_great_britain.html
To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first pubilshed under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. The first complete coverage of Great Britain at the half-inch scale was achieved by 1903 with 67 individual half-inch sheets. Generally at this time, the English sheets sold three times more quickly, at three times the volume of the Scottish sheets. As for Scotland, Bartholomew used their half-inch sheets of England and Wales in the Survey Atlas of England and Wales published in 1903. From 1901, following a copyright complaint from Ordnance Survey, Bartholomew was forced to drop 'Ordnance' from their map titles. The series was initially renamed 'Bartholomew's Reduced Survey', and by 1903 'Bartholomew's half inch to the mile map'.Bartholomew revised the most popular half-inch sheets every couple of years, ensuring that their maps were more up to date than their main rival, Ordnance Survey. Popular sheets had print runs of several tens of thousands per edition, involving nearly 20 different layer colour plates for hillier areas with more colour.More information: http://geo.nls.uk/maps/bartholomew/great_britain/further_info.html
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Wader Zonal Map - a.k.a. Wader Sensitivity Map (WSM) and Breeding Wader Sensitivity Map - was produced by the British Trust for Ornithology (BTO) in partnership with the Forestry Commission and the Cairngorm National Park Authority. This layer shows the predicted relative abundance of ten species of breeding wader for each 1km square of England, Scotland and Wales.
This layer of the GeoIndex shows the location of available 1:10000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. The DiGMapGB-10 dataset is as yet incomplete, current work is concentrated on extending the geographical cover, especially to cover high priority urban areas.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
This layer of the GeoIndex shows the location of available 1:50000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. Most of the 1:50 000 scale geological maps for England & Wales and for Scotland are now available digitally as part of the DiGMapGB-50 dataset. It integrates geological information from a variety of sources. These include recent digital maps, older 'paper only' maps, and desk compilations for sheets with no published maps.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
The Feature Layer made available to the Living Atlas has been adapted from the 625k Geology dataset freely available from the BGS website. The attribution and labels of the geological areas (or polygons) have been simplified to make the data more available to a wider audience. The dataset is aimed at students with an interest in Earth Sciences and amateur geologists who want to find out more. The LEX_RCS & LEX_ROCK codes have been preserved to allow users to reference the layers to to the 625k Geology Dataset.
About BGS Geology 625k:
BGS Geology 625k is a generalised digital geological map dataset based on BGS’s published poster maps of the UK (north and south). Bedrock-related themes were created by generalisation of 1:50 000 data to make the 2007 fifth edition bedrock geology map. Superficial geology-related themes were digitised from the 1977 first edition Quaternary map (north and south). Many BGS geology maps are now available digitally. The Digital Geological Map of Great Britain project (formerly known as DiGMapGB) has prepared 1:625 000, 1:250 000, 1:50 000 and 1:10 000-scale datasets for England, Wales, and Scotland. Work continues to upgrade these. Geological maps are often the foundation for many other earth science-related maps and are of potential use to a wide range of end users. This dataset uses the themes:
Bedrock Geology Superficial Geology Linear features (faults)
More information on the BGS 625k Geology Dataset can be found on the BGS website. The 625k Geology data can also be viewed alongside other BGS datasets in the GeoIndex viewer. The currency of this data is August 2022, while there are no planned regular updates, BGS continuously reviews its data products and will release new versions of the BGS Geology 625k when available.
This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.
The population of the United Kingdom in 2023 was estimated to be approximately 68.3 million in 2023, with almost 9.48 million people living in South East England. London had the next highest population, at over 8.9 million people, followed by the North West England at 7.6 million. With the UK's population generally concentrated in England, most English regions have larger populations than the constituent countries of Scotland, Wales, and Northern Ireland, which had populations of 5.5 million, 3.16 million, and 1.92 million respectively. English counties and cities The United Kingdom is a patchwork of various regional units, within England the largest of these are the regions shown here, which show how London, along with the rest of South East England had around 18 million people living there in this year. The next significant regional units in England are the 47 metropolitan and ceremonial counties. After London, the metropolitan counties of the West Midlands, Greater Manchester, and West Yorkshire were the biggest of these counties, due to covering the large urban areas of Birmingham, Manchester, and Leeds respectively. Regional divisions in Scotland, Wales and Northern Ireland The smaller countries that comprise the United Kingdom each have different local subdivisions. Within Scotland these are called council areas whereas in Wales the main regional units are called unitary authorities. Scotland's largest Council Area by population is that of Glasgow City at over 622,000, while in Wales, it was the Cardiff Unitary Authority at around 372,000. Northern Ireland, on the other hand, has eleven local government districts, the largest of which is Belfast with a population of around 348,000.
Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:625 000 providing a simplified interpretation of the geology. Onshore coverage is provided for all of England, Wales, Scotland, the Isle of Man and Northern Ireland. Data are supplied as four themes: bedrock, superficial deposits, dykes and linear features (faults). Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. Geological names are based on the lithostratigraphic or lithodemic hierarchy of the rocks. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Superficial deposits are younger geological deposits formed during the most recent geological time; the Quaternary. These deposits rest on older rocks or deposits referred to as bedrock. The superficial deposits theme defines landscape areas (shown as polygons) attributed with a geological name and their deposit-type or lithological composition. The dykes theme defines small, narrow areas (shown as polygons) of a specific type of bedrock geology; that is igneous rocks which have been intruded into the landscape at a later date than the surrounding bedrock. They are presented as an optional, separate theme in order to provide additional clarity of the bedrock theme. The bedrock and dykes themes are designed to be used together. Linear features data (shown as polylines) represents geological faults at the ground or bedrock surface (beneath superficial deposits). Geological faults occur where a body of bedrock has been fractured and displaced by large scale processes affecting the earth's crust (tectonic forces). The faults theme defines geological faults (shown as polylines) at the ground or bedrock surface (beneath superficial deposits). All four data themes are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are delivered free of charge under the terms of the Open Government Licence.
For much of the Geological Survey's existence, the County Series of maps were the standard large-scale maps on which geological mapping was undertaken. These maps are based on the Ordnance Survey County (or six-inch to the mile) series of maps. These maps were cut up to be used in the field to record geological observations, and on return to the office, the geology was transferred to a complete County Series map, which after approval was known as a 'standard' (England / Wales) or 'clean copy' (Scotland). This dataset contains the 'standard' or 'clean copy' County Series maps held by BGS. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
https://www.data.gov.uk/dataset/8e3915a0-db84-4c07-9eb4-34887b2b068c/os-cities-data#licence-infohttps://www.data.gov.uk/dataset/8e3915a0-db84-4c07-9eb4-34887b2b068c/os-cities-data#licence-info
Great Britain's (England, Scotland, Wales) cities (e.g. London, Birmingham, Edinburgh) named and represented as point features with an indicative bounding box. This data is often used for geocoding, service delivery and statistical analysis. OS Cities Data is available in a number of Ordnance Survey (OS) products: OS Open Names (bounding box and point geometry), OS Names API, MasterMap Topography Layer (point geometry), Vector Map Local (point geometry) and Vector Map District (point geometry). Small-scale cartographic representations are also available in OS cartographic products. All data is collected by Ordnance Survey as part of their role as the National Mapping Agency of Great Britain.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Data identifying landscape areas (shown as polygons) attributed with geological names and rock type descriptions. The scale of the data is 1:50 000 scale providing bedrock geology. Onshore coverage is provided for all of England, Wales, Scotland and the Isle of Man. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. The bedrock geology of Great Britain is very diverse and includes three broad classes based on their mode of origin: igneous, metamorphic and sedimentary. The data includes attribution to identify each rock type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volumes 1-3 ). The bedrock has formed over long periods of geological time, from the Archean eon some 7500 million years ago, to the relatively young Pliocene, 58 million years ago. The age of the rocks is identified in the data through their BGS lexicon name (published for each deposit at the time of the original survey or subsequent digital data creation). For stratified rocks i.e. arranged in sequence, this will usually be of a lithostratigraphic type. Other rock types for example intrusive igneous bodies will be of a lithodemic type. More information on the formal naming of UK rocks is available in the BGS Lexicon of Named Rock Units. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition, using visible features such as texture, structure, mineralogy. The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.
Strategi is detailed digital map data, ideal for applications requiring an overview of geographical information on England, Scotland and Wales. It is derived from the Ordnance Survey 1:250 000 scale topographic database and provides mapping for applications requiring a regional overview.
Geographical features within Strategi are represented as vector (point and line) data, enabling you to link your business information to relevant features on the map for planning purposes and statistical analysis.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The 1:63 360 / 1:50 000 scale map series are the most useful scale for most purposes. They provide almost complete coverage of onshore Great Britain. The BGS collection of 1:63 360 and 1:50 000 scale maps comprises two map series: - Geological Survey of England and Wales 1:63 360 / 1:50 000 Geological Map Series [New Series]. These maps are based on the Ordnance Survey One-inch New Series topographic basemaps and provide almost complete coverage of England and Wales, with the exception of sheet 180 (Knighton). The quarter-sheets of 1:63 360 Old Series sheets 91 to 110 coincide with sheets 1 to 73 of the New Series maps. These earlier maps often carry two sheet numbers which refer to the Old Series and the New Series. - Geological Survey of Scotland 1:63 360 / 1:50 000 Geological Map Series. These maps are based on the Ordnance Survey First, Second, Third and Fourth editions of the One-inch map of Scotland. The maps used the most recent topographic basemap available at the time. In the Western Isles, one-inch mapping was abandoned and replaced by maps at 1:100 000 scale, which are associated with this series. Sheets were traditionally issued at 1:63 360 scale, with the first 1:50 000 maps appearing in 1972. Sheets at 1:50 000 scale may be either facsimile enlargements of an existing 1:63 360 sheets, or may contain new geology and cartography. The latter bear the additional series designation '1:50 000 series'. Within the Scottish series, new mapping at 1:50 000 scale was split into east and west sheets. For example, the original one-inch sheet 32 became 1:50 000 sheets 32E and 32W. A number of irregular sheets were also introduced with the new 1:50 000 scale mapping. There are a number of irregular special sheets within both series. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are, for the most part, hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
In 2023, almost nine million people lived in Greater London, making it the most populated ceremonial county in England. The West Midlands Metropolitan County, which contains the large city of Birmingham, was the second-largest county at 2.98 million inhabitants, followed by Greater Manchester and then West Yorkshire with populations of 2.95 million and 2.4 million, respectively. Kent, Essex, and Hampshire were the three next-largest counties in terms of population, each with around 1.89 million people. A patchwork of regions England is just one of the four countries that compose the United Kingdom of Great Britain and Northern Ireland, with England, Scotland and Wales making up Great Britain. England is therefore not to be confused with Great Britain or the United Kingdom as a whole. Within England, the next subdivisions are the nine regions of England, containing various smaller units such as unitary authorities, metropolitan counties and non-metropolitan districts. The counties in this statistic, however, are based on the ceremonial counties of England as defined by the Lieutenancies Act of 1997. Regions of Scotland, Wales, and Northern Ireland Like England, the other countries of the United Kingdom have their own regional subdivisions, although with some different terminology. Scotland’s subdivisions are council areas, while Wales has unitary authorities, and Northern Ireland has local government districts. As of 2022, the most-populated Scottish council area was Glasgow City, with over 622,000 inhabitants. In Wales, Cardiff had the largest population among its unitary authorities, and in Northern Ireland, Belfast was the local government area with the most people living there.
This layer of the map based index (GeoIndex) shows the availability of 1:50000 series geological maps. For England and Wales (and Northern Ireland), map sheets normally cover an area 30 km east-west and 20 km north-south; in Scotland the coverage is 20 km east-west and 30 km north-south. The 1:50 000 geological map grids are based on an early Ordnance Survey 1:63 360 (one inch to one mile) scale map grid and are not related to the current Ordnance Survey 1:50 000 map sheets. Maps are normally available in both flat and folded formats.
The joint PHE-BGS digital Indicative Atlas of Radon in Great Britain presents an overview of the results of detailed mapping of radon potential, defined as the estimated percentage of homes in an area above the radon Action Level. The Indicative Atlas of Radon in Great Britain presents a simplified version of the Radon Potential Dataset for Great Britain with each 1-km grid square being classed according to the highest radon potential found within it, so is indicative rather than definitive. The joint PHE-BGS digital Radon Potential Dataset for Great Britain provides the current definitive map of radon Affected Areas in Great Britain. The Indicative Atlas of Radon in Great Britain is published in two documents. The area of England and Wales is published in Miles J.C.H, Appleton J.D, Rees D.M, Green B.M.R, Adlam K.A.M and Myers, A.H., 2007. Indicative Atlas of Radon in England and Wales. ISBN: 978-0-85951-608-2. 29 pp). The corresponding publication for Scotland is Miles J.C.H, Appleton J.D, Rees D.M, Adlam K.A.M, Green B.M.R, And Scheib, C., 2011. Indicative Atlas of Radon in Scotland. The method by which the PHE-BGS joint Radon Potential Dataset for Great Britain was produced is published in: MILES, J.C.H, and APPLETON J.D., 2005. Mapping variation in radon potential both between and within geological units. Journal of Radiological Protection 25, 257-276. Radon is a natural radioactive gas, which enters buildings from the ground. Exposure to high concentrations increases the risk of lung cancer. Public Health England recommends that radon levels should be reduced in homes where the annual average is at or above 200 becquerels per cubic metre (200 Bq m-3). This is termed the Action Level. Public Health England defines radon Affected Areas as those with 1% chance or more of a house having a radon concentration at or above the Action Level of 200 Bq m-3. The dataset was originally developed by BGS with the Health Protection Agency (HPA) which is now part of Public Health England.
This layer of the map based index (GeoIndex) shows the boundaries of the G-BASE (Geochemical Baseline Survey of the Environment) project mapping areas which are reported as geochemical atlases. The majority of atlases are for stream sediments, with data on stream waters and soils included when available. Separate stream sediment, soil and stream water atlases have been published for Wales. Wales and north of Humber-Trent are reported as hardcopy generally A3 sized publications. The Humber-Trent atlas is available as a pdf file on a CD-ROM. Atlases are available for Shetland, Orkney, South Orkney and Caithness, Sutherland, Hebrides, Great Glen, East Grampians, Argyll, Southern Scotland, Lake District, NE England, NW England and N Wales, Humber-Trent, Wales and West Midlands. Atlases are not available yet for the East Midlands, East Anglia, SE England and SW England.
Colourful and easy to use, Bartholomew’s maps became a trademark series. The maps were popular and influential, especially for recreation, and the series sold well, particularly with cyclists and tourists. To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first published under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps of Scotland formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. This Bartholomew series at half-inch to the mile, covered Great Britain in 62 sheets in the 1940s, Bartholomew’s first to cover Great Britain at this scale (their previous series covering Scotland and then England and Wales). The series provides an attractive and useful snapshot of 1940s Britain. By this time, Bartholomew had altered the range of information on their maps compared to the 1900s. There were more categories of roads, Ministry of Transport road numbers were added, and new recreational features such as Youth Hostels and Golf Courses. Bartholomew’s topographic information was gathered partly from original Ordnance Survey maps, and partly from information sent in to Bartholomew from map users. One important user community for Bartholomew were cyclists. From the 1890s, Bartholomew entered into a formal relationship with the Cyclists’ Touring Club, then numbering around 60,500 cyclists, proposing that club members supplied Bartholomew with up-to-date information. In return, Bartholomew provided the CTC with discounted half-inch maps. The relationship worked very well, turning CTC members into an unofficial surveying army, feeding back reliable and accurate topographical information which Bartholomew would then use to update their maps. You can read more about this and see selected letters from cyclists at: http://digital.nls.uk/bartholomew/duncan-street-explorer/cyclists-touring-club.html.
Usually Bartholomew made revisions the sheets right up to the time of publication, so the date of publication is the best guide to the approximate date of the features shown on the map. You can view the dates of publication for the series at: https://maps.nls.uk/series/bart_half_great_britain.html