100+ datasets found
  1. d

    Digital City Map – Geodatabase

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated May 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Digital City Map – Geodatabase [Dataset]. https://catalog.data.gov/dataset/digital-city-map-geodatabase
    Explore at:
    Dataset updated
    May 11, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

  2. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  3. a

    Global Cities

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Global Cities [Dataset]. https://hub.arcgis.com/maps/aa8135223a0e401bb46e11881d6df489
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.

  4. d

    Cities

    • catalog.data.gov
    • data.oregon.gov
    • +4more
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Atlas of the United States (2025). Cities [Dataset]. https://catalog.data.gov/dataset/cities-33bb6
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    National Atlas of the United States
    Description

    This map layer includes cities and towns in Oregon. These cities were clipped from a larger dataset of cities collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December 2003 map layer.

  5. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  6. u

    Accessibility To Cities 2015

    • datacore-gn.unepgrid.ch
    Updated May 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malaria Atlas Project, University of Oxford. Director of Global Malaria Epidemiology (2018). Accessibility To Cities 2015 [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/dd9da394-1f82-423a-a290-24744ba79a78
    Explore at:
    ogc:wms-1.3.0-http-get-map, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    May 16, 2018
    Dataset provided by
    UNEP-GRID Geneva
    Authors
    Malaria Atlas Project, University of Oxford. Director of Global Malaria Epidemiology
    Area covered
    Description

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city. Authors: D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181

    Processing notes: Data were processed from numerous sources including OpenStreetMap, Google Maps, Land Cover mapping, and others, to generate a global friction surface of average land-based travel speed. This accessibility surface was then derived from that friction surface via a least-cost-path algorithm finding at each location the closest point from global databases of population centres and densely-populated areas. Please see the associated publication for full details of the processing.

    Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/

  7. World Cities

    • hub.arcgis.com
    • data.lojic.org
    • +4more
    Updated Jun 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World Cities [Dataset]. https://hub.arcgis.com/datasets/esri::world-cities
    Explore at:
    Dataset updated
    Jun 30, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.

  8. s

    Cities and Towns

    • open.sbcounty.gov
    • data-sbcounty.opendata.arcgis.com
    Updated May 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of San Bernardino (2021). Cities and Towns [Dataset]. https://open.sbcounty.gov/maps/cities-and-towns
    Explore at:
    Dataset updated
    May 5, 2021
    Dataset authored and provided by
    County of San Bernardino
    Area covered
    Description

    City and town boundaries for the purpose of establishing election divisions within a district. Created April 16, 2021. The districts contained within this dataset only represent districts that conduct an election. This dataset may not contain all districts within San Bernardino County. This dataset should only be used for the purpose of establishing election divisions within a district. It will be removed once the redistricting process has concluded.

  9. K

    US Major Cities

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Department of Agriculture (USDA) (2018). US Major Cities [Dataset]. https://koordinates.com/layer/11897-us-major-cities/
    Explore at:
    csv, mapinfo tab, geodatabase, pdf, geopackage / sqlite, mapinfo mif, kml, shapefile, dwgAvailable download formats
    Dataset updated
    Aug 30, 2018
    Dataset authored and provided by
    US Department of Agriculture (USDA)
    Area covered
    Description

    This layer is a component of 2007_NAIP_COVERAGE_3.mxd.

  10. D

    A global map of travel time to cities

    • phys-techsciences.datastations.nl
    • narcis.nl
    bin, pdf, tiff, xml +1
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D. Weiss; D. Weiss (2024). A global map of travel time to cities [Dataset]. http://doi.org/10.17026/DANS-ZTX-2SD2
    Explore at:
    xml(18837), bin(83), bin(222), tiff(3006998939), xml(18880), zip(19835), pdf(124928), tiff(413309997)Available download formats
    Dataset updated
    Jun 24, 2024
    Dataset provided by
    DANS Data Station Physical and Technical Sciences
    Authors
    D. Weiss; D. Weiss
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A global analysis of accessibility to high-density urban centres at a resolution of 1×1 kilometre for 2015, as measured by travel time.To model the time required for individuals to reach their most accessible city, we first quantified the speed at which humans move through the landscape. The principle underlying this work was that all areas on Earth, represented as pixels within a 2D grid, had a cost (that is, time) associated with moving through them that we quantified as a movement speed within a cost or ‘friction’ surface. We then applied a least-cost-path algorithm to the friction surface in relation to a set of high-density urban points. The algorithm calculated pixel-level travel times for the optimal path between each pixel and its nearest city (that is, with the shortest journey time). From this work we ultimately produced two products: (a) an accessibility map showing travel time to urban centres, as cities are proxies for access to many goods and services that affect human wellbeing; and (b) a friction surface that underpins the accessibility map and enables the creation of custom accessibility maps from other point datasets of interest. The map products are in GeoTIFF format in EPSG:4326 (WGS84) project with a spatial resolution of 30 arcsecs. The accessibility map pixel values represent travel time in minutes. The friction surface map pixels represent the time, in minutes required to travel one metre. This DANS data record contains these two map products. Issued: 2018-01-10

  11. a

    City Limits Map

    • open-data-portal-atcog.hub.arcgis.com
    Updated Feb 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwagner@atcog.org (2022). City Limits Map [Dataset]. https://open-data-portal-atcog.hub.arcgis.com/maps/3a4c50f0113c481994af1b845e3b90fb
    Explore at:
    Dataset updated
    Feb 3, 2022
    Dataset authored and provided by
    wwagner@atcog.org
    Area covered
    Description

    Map of city limits data for Bowie, Cass, Delta, Franklin, Hopkins, Lamar, Morris, Red River, and Titus Counties within Texas and Miller County, Arkansas.For questions, problems, or more information, contact gis@atcog.orghttps://atcog.org/

  12. M

    Minnesota Cities, Townships, and Counties Reference Map

    • gisdata.mn.gov
    • data.wu.ac.at
    html, jpeg +1
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2024). Minnesota Cities, Townships, and Counties Reference Map [Dataset]. https://gisdata.mn.gov/dataset/bdry-cities-counties-twps-map
    Explore at:
    jpeg, printable_map, htmlAvailable download formats
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This map of Minnesota cities, townships, and counties was published by MnGeo in January 2019. The primary data set for the map is the "Cities, Townships, and Unorganized Territories" (MnCTU) data maintained by the Minnesota Department of Transportation. Other reference data on the map include County Seats and Other Cities, County Boundaries, Interstate, US Trunk, and State Trunk Highways, Major Rivers, Lakes, County and State Boundaries. The download is a PDF file with embedded layers that can be printed at E-scale (36" x 48").

  13. a

    City Base Map

    • hub.arcgis.com
    • geohub.brampton.ca
    Updated May 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Brampton (2017). City Base Map [Dataset]. https://hub.arcgis.com/documents/6110be81714642db91ab10c713a7d682
    Explore at:
    Dataset updated
    May 31, 2017
    Dataset authored and provided by
    City of Brampton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    City wide map showing all streets, grid, lot and concession, schools, City facilities, points of interest and emergency services.

  14. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +5more
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  15. d

    Digital City Map – Shapefile

    • datasets.ai
    • data.cityofnewyork.us
    23, 25, 57, 8
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of New York (2024). Digital City Map – Shapefile [Dataset]. https://datasets.ai/datasets/digital-city-map-shapefile
    Explore at:
    25, 8, 57, 23Available download formats
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    City of New York
    Description

    The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points).

    All of the Digital City Map (DCM) datasets are featured on the Streets App

    All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

    Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.

  16. n

    Cities Towns

    • opdgig.dos.ny.gov
    • data.gis.ny.gov
    • +1more
    Updated Dec 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2022). Cities Towns [Dataset]. https://opdgig.dos.ny.gov/maps/sharegisny::cities-towns
    Explore at:
    Dataset updated
    Dec 20, 2022
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    Publication Date: May 2025.


    Updated as needed. Current as of the Publication Date.

    A vector polygon layer of all city and town boundaries in New York State. The source data was originally a compilation of U.S. Geological Survey 1:100,000-scale digital vector files and NYS Department of Transportation 1:24,000-scale and 1:75,000-scale digital vector files. Boundaries were revised to 1:24,000-scale positional accuracy and selectively updated based on municipal boundary reviews, court decisions and NYS Department of State Local Law filings for annexations, dissolutions, and incorporations. Currently, boundary changes are made based on NYS Department of State Local Law filings (https://locallaws.dos.ny.gov/). Additional updates and corrections are made as needed in partnership with municipalities.

    Additional metadata, including field descriptions, can be found at the NYS GIS Clearinghouse: https://gis.ny.gov/civil-boundaries.

    Spatial Reference of Source Data: NAD 1983 UTM Zone 18N. Spatial Reference of Map Service: WGS 1984 Web Mercator Auxiliary Sphere.

    This map service is available to the public.


    The State of New York, acting through the New York State Office of Information Technology Services, makes no representations or warranties, express or implied, with respect to the use of or reliance on the Data provided. The User accepts the Data provided “as is” with no guarantees that it is error free, complete, accurate, current or fit for any particular purpose and assumes all risks associated with its use. The State disclaims any responsibility or legal liability to Users for damages of any kind, relating to the providing of the Data or the use of it. Users should be aware that temporal changes may have occurred since this Data was created.

  17. European Cities: Cartosat-1 Euro-Maps 3D

    • earth.esa.int
    Updated Sep 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Space Agency (2022). European Cities: Cartosat-1 Euro-Maps 3D [Dataset]. https://earth.esa.int/eogateway/catalog/european-cities-cartosat-1-euro-maps-3d
    Explore at:
    Dataset updated
    Sep 28, 2022
    Dataset authored and provided by
    European Space Agencyhttp://www.esa.int/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a

    Time period covered
    Sep 30, 2007 - Jun 4, 2015
    Description

    A large number of European cities are covered by this dataset; for each city you can find one or more Cartosat-1 ortho image products and one or more Euro-Maps 3D DSM tiles clipped to the extent of the ortho coverage. The Euro-Maps 3D DSM is a homogeneous, 5 m spaced Digital Surface Model semi-automatically derived from 2.5 m Cartosat-1 in-flight stereo data with a vertical accuracy of 10 m. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. The final product includes several pixel-based quality and traceability layers: The dsm layer (_dsm.tif) contains the elevation heights as a geocoded raster file The source layer (_src.tif) contains information about the data source for each height value/pixel The number layer (_num.tif) contains for each height value/pixel the number of IRS-P5 Cartosat-1 stereo pairs used for the generation of the DEM The quality layer (_qc.tif) is set to 1 for each height/pixel value derived from IRS-P5 Cartosat-1 data and which meets or exceeds the product specifications The accuracy vertical layer (*_acv.tif) contains the absolute vertical accuracy for each quality controlled height value/pixel. The ortho image is a Panchromatic image at 2.5 m resolution. The following table defines the offered product types. EO-SIP product type Description PAN_PAM_3O IRS-P5 Cartosat-1 ortho image DSM_DEM_3D IRS-P5 Cartosat-1 DSM

  18. d

    ScienceBase Item Summary Page

    • datadiscoverystudio.org
    gz
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey, National Geospatial Technical Operations Center, ScienceBase Item Summary Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/b39125b8d1de44d896b8890f2261c351/html
    Explore at:
    gzAvailable download formats
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  19. Major Towns and Cities and Built-up Areas Swipe Map - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2023). Major Towns and Cities and Built-up Areas Swipe Map - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/major-towns-and-cities-and-built-up-areas-swipe-map1
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    How would you define the boundaries of a town or city in England and Wales in 2016? Maybe your definition would be based on its population size, geographic extent or where the industry and services are located. This was a question the ONS had to consider when creating a new statistical geography called Towns and Cities. In reality, the ability to delimit the boundaries of a city or town is difficult! Major Towns and Cities The new statistical geography, Towns and Cities has been created based on population size and the extent of the built environment. It contains 112 towns and cities in England and Wales, where the residential and/or workday population > 75,000 people at the 2011 Census. It has been constructed using the existing Built-Up Area boundary set produced by Ordnance Survey in 2011. This swipe map shows where the towns and cities and built-up areas are different. Just swipe the bar from left to right. The blue polygons are the towns and cities and the purple polygons are the built-up areas.

  20. i

    PDF Format City and County Maps

    • data.iowadot.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2018). PDF Format City and County Maps [Dataset]. https://data.iowadot.gov/documents/2d416484f88a4091af2771772216ed52
    Explore at:
    Dataset updated
    Jul 17, 2018
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Downloadable H&T PDF City and County Maps.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2024). Digital City Map – Geodatabase [Dataset]. https://catalog.data.gov/dataset/digital-city-map-geodatabase

Digital City Map – Geodatabase

Explore at:
Dataset updated
May 11, 2024
Dataset provided by
data.cityofnewyork.us
Description

The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

Search
Clear search
Close search
Google apps
Main menu