100+ datasets found
  1. 2011 11: Travel Time and Housing Price Maps: 390 Main Street

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Nov 16, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a
    Explore at:
    Dataset updated
    Nov 16, 2011
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

  2. f

    Data from: Geostatistical space–time mapping of house prices using Bayesian...

    • tandf.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darren K. Hayunga; Alexander Kolovos (2023). Geostatistical space–time mapping of house prices using Bayesian maximum entropy [Dataset]. http://doi.org/10.6084/m9.figshare.3160162.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Darren K. Hayunga; Alexander Kolovos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mapping spatial processes at a small scale is a challenge when observed data are not abundant. The article examines the residential housing market in Fort Worth, Texas, and builds price indices at the inter- and intra-neighborhood levels. To accomplish our objectives, we initially model price variability in the joint space–time continuum. We then use geostatistics to predict and map monthly housing prices across the area of interest over a period of 4 years. For this analysis, we introduce the Bayesian maximum entropy (BME) method into real estate research. We use BME because it rigorously integrates uncertain or secondary soft data, which are needed to build the price indices. The soft data in our analysis are property tax values, which are plentiful, publicly available, and highly correlated with transaction prices. The results demonstrate how the use of the soft data provides the ability to map house prices within a small areal unit such as a subdivision or neighborhood.

  3. a

    Median Price of Homes Sold

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data.baltimorecity.gov
    • +1more
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Price of Homes Sold [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/eb55867e580740228b0d4317464ea040
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The median home sales price is the middle value of the prices for which homes are sold (both market and private transactions) within a calendar year. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the prices for which homes are sold. This measure does not take into account the assessed value of a property.Source: First American Real Estate Solutions (FARES) and RBIntel (2022-forward)Years Available: 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2022, 2023

  4. Annual home price appreciation in the U.S. 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Jan 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of three percent. The annual appreciation for single-family housing in the U.S. was 0.71 percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded 10 percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded 413,000 U.S. dollars, up from 277,000 U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as 2.3 percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded 20 percent in 2024.

  5. House Sales in Ontario

    • kaggle.com
    Updated Oct 7, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdy Nabaee (2016). House Sales in Ontario [Dataset]. https://www.kaggle.com/mnabaee/ontarioproperties/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 7, 2016
    Dataset provided by
    Kaggle
    Authors
    Mahdy Nabaee
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Ontario
    Description

    This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: - Price in dollars - Address of the property - Latitude and Longitude of the address obtained by using Google Geocoding service - Area Name of the property obtained by using Google Geocoding service

    This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas)

    However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes).

    This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/

    I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction

  6. Average residential real estate square meter prices in Europe 2023, by...

    • statista.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average residential real estate square meter prices in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/722905/average-residential-square-meter-prices-in-eu-28-per-country/
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe
    Description

    The average transaction price of new housing in Europe was the highest in Norway, whereas existing homes were the most expensive in Austria. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, not all countries are included. To compile the ranking, the source weighed the transaction prices of residential properties in the most important cities in each country based on data from their national offices. For example, in Germany, the cities included were Munich, Hamburg, Frankfurt, and Berlin. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly 97 percent in Romania or around 90 percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up 65 percent and 72 percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.

  7. F

    Real Residential Property Prices for China

    • fred.stlouisfed.org
    json
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for China [Dataset]. https://fred.stlouisfed.org/series/QCNR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 27, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Real Residential Property Prices for China (QCNR628BIS) from Q2 2005 to Q4 2024 about China, residential, HPI, housing, real, price index, indexes, and price.

  8. a

    City of Dallas 2023 Housing Market Value Analysis and Displacement Risk...

    • egisdata-dallasgis.hub.arcgis.com
    Updated Dec 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Dallas GIS Services (2023). City of Dallas 2023 Housing Market Value Analysis and Displacement Risk Ratio [Dataset]. https://egisdata-dallasgis.hub.arcgis.com/maps/3998e909ccae443dac2b898aeb4ca8b9
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    City of Dallas GIS Services
    Area covered
    Description

    The Market Value Analysis (MVA) is a tool to help residents and policymakers identify and understand the elements of their local real estate markets. It is an objective, data-driven tool built on local administrative data and validated with local experts. With an MVA, public officials and private actors can more precisely target intervention strategies in weak markets and support sustainable growth in stronger markets.In 2023, Reinvestment Fund completed an update to the City of Dallas MVA. The first MVA study in the City of Dallas was conducted in 2018 and a new study was needed to update information on current housing market conditions in Dallas neighborhoods.This is a map of the 2023 Housing Market Value Analysis and Displacement Risk Ratio for the City of Dallas. The map displays affordability information related to housing such as household income and house prices within the context of determined market types A-I. The map also includes data variables related to displacement risk ratio, or the likelihood for residents in a housing area to be push out, or displaced. The analysis was completed by a contractor, Reinvestment Fund. The analysis and findings are provided on the 2023 Market Value Analysis storymap.

  9. a

    Housing Value 2022 (all geographies, statewide)

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Housing Value 2022 (all geographies, statewide) [Dataset]. https://hub.arcgis.com/maps/57a9a53be8074818be578ddbc03c0e3f
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  10. Average house price in Mexico, by state 2024

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in Mexico, by state 2024 [Dataset]. https://www.statista.com/statistics/1056997/average-housing-prices-mexico-state/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Mexico
    Description

    Mexico's housing market demonstrates significant regional price variations, with Mexico City emerging as the most expensive area for residential property in 2024. The capital city's average house price of 3.91 million Mexican pesos far exceeds the national average of 1.73 million pesos, highlighting the stark contrast in property values across the country. This disparity reflects broader economic and demographic trends shaping Mexico's real estate landscape. Sustained growth in housing prices The Mexican housing market has experienced substantial growth over the past decade, with home prices more than doubling since 2010. By the third quarter of 2023, the nominal house price index reached 255.54 points, representing a 146 percent increase from the baseline year. Even when adjusted for inflation, the real house price index showed a notable 40 percent growth, underscoring the market's resilience and attractiveness to investors. The mortgage market is dominated by three main player types: Infonavit, Fovissste, and commercial banks including Sofomes. In 2023, Infonavit, a scheme by Mexico's National Housing Fund Institute which provides lending to workers in the formal sector, was responsible for the majority of mortgages granted to individuals. Challenges in mortgage lending Despite the overall growth in housing prices, Mexico's mortgage market has faced challenges in recent years. The number of new mortgage loans granted has declined over the past decade, falling by approximately 200,000 loans between 2008 and 2023. This decrease in lending activity may be attributed to various factors, including economic uncertainties and changing consumer preferences. The state of Mexico, which is home to 13 percent of the country's population, likely plays a significant role in shaping these trends, given its large demographic influence on the national housing market.

  11. HUD - Section 202 Properties

    • opendata.atlantaregional.com
    • data.lojic.org
    • +3more
    Updated Dec 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2019). HUD - Section 202 Properties [Dataset]. https://opendata.atlantaregional.com/maps/HUD::hud-section-202-properties-1/about
    Explore at:
    Dataset updated
    Dec 19, 2019
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    This map denotes the locations of HUD assisted Multi-Family properties that primarily serve elderly residents. In addition, each property illustrated through this service has at least one active Service Coordinator contract or grant, Section 236 loan, Section 8 202 contract, Section 8 Farmers Home Administration (FMHA) 515 contract, Section 8 New Construction contract, Section 202 Project Assistance Contracts (PAC) contract, and Section 202 Project Rental Assistance Contract (PRAC). Please note that the data provided through this map only includes location data and attributes for those addresses that can be geocoded to an interpolated point along a street segment, or to a ZIP+4 centroid location. While not all records are able to be geocoded and mapped, we are continuously working to improve the address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD.

    To learn more about the Section 202 Program visit: https://www.hud.gov/program_offices/housing/mfh/progdesc/eld202

    Data Dictionary: DD_Multifamily Properties Date of Coverage: 12/2019

    Data Updated: Quarterly

  12. Average house price per square meter in Spain 2023, by region

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price per square meter in Spain 2023, by region [Dataset]. https://www.statista.com/statistics/1093228/average-house-price-per-square-meter-in-spain-as-of-by-region/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023
    Area covered
    Spain
    Description

    The average square meter price of residential real estate in the Balearic Islands was higher than in any other region in Spain in October 2023. At over 4,000 euros per square meter, house prices in the Balearic Islands were about twice higher than the national average. In Spain, the majority of households live in an owner-occupied home.

  13. c

    Where do people own homes and what is the home value?

    • hub.scag.ca.gov
    • hub.arcgis.com
    • +1more
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where do people own homes and what is the home value? [Dataset]. https://hub.scag.ca.gov/maps/5342a27bc29f49e5b8622b0504cf4f9a
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This web map shows a comparison of owner occupied housing and the median home value for counties, tracts, and block groups in the US in 2018. Yellow areas have over 50% of households occupied by the home owner. A large symbol denotes a larger median home value. The popup is configured to show the following:% Owner occupied housingCount of owner occupied housesCount of renter occupied housesTotal householdsMedian home valueHousehold income by rangeThe source of the data is Esri's 2018 demographic estimates. For more information about Esri's demographic data, visit the Updated Demographics documentation.

  14. Mexicali housing prices

    • kaggle.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cesar LR (2025). Mexicali housing prices [Dataset]. https://www.kaggle.com/datasets/cesarlr/mexicali-housing-prices
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cesar LR
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Mexicali
    Description

    Houses.csv - Web scraping was performed on https://propiedades.com/mexicali/casas-venta?pagina=1#remates=2 with the filters: Sale; Houses

    mxl.shp - Population data were obtained from CONAPO's portal in the actions and programs of CONAPO in the actions and programs section. Marginalization in Mexico: https://www.gob.mx/conapo/acciones-y-programas/marginacion-en-mexico. A reshape of the map was downloaded and modified from Mexico's Open Data page. Zip Code Location Map for Baja California: https://datos.gob.mx/busca/dataset/ubicacion-de-codigos-postales-en-mexico/resource/39217bc6-f30b-429b-a4ba-4e2e5eea1a6d

  15. H

    Comprehensive dataset and Python toolkit for housing market analysis in...

    • dataverse.harvard.edu
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingston Li (2025). Comprehensive dataset and Python toolkit for housing market analysis in Mercer County, NJ [Dataset]. http://doi.org/10.7910/DVN/LYRDHG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Kingston Li
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Mercer County, New Jersey
    Description

    This project combines data extraction, predictive modeling, and geospatial mapping to analyze housing trends in Mercer County, New Jersey. It consists of three core components: Census Data Extraction: Gathers U.S. Census data (2012–2022) on median house value, household income, and racial demographics for all census tracts in the county. It accounts for changes in census tract boundaries between 2010 and 2020 by approximating values for newly defined tracts. House Value Prediction: Uses an LSTM model with k-fold cross-validation to forecast median house values through 2025. Multiple feature combinations and sequence lengths are tested to optimize prediction accuracy, with the final model selected based on MSE and MAE scores. Data Mapping: Visualizes historical and predicted housing data using GeoJSON files from the TIGERWeb API. It generates interactive maps showing raw values, changes over time, and percent differences, with customization options to handle outliers and improve interpretability. This modular workflow can be adapted to other regions by changing the input FIPS codes and feature selections.

  16. o

    Zoopla properties listing information dataset

    • opendatabay.com
    .other
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Zoopla properties listing information dataset [Dataset]. https://www.opendatabay.com/data/premium/9e626c7a-38e8-446e-bf9b-1c9a3d71154a
    Explore at:
    .otherAvailable download formats
    Dataset updated
    May 25, 2025
    Dataset authored and provided by
    Bright Data
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    E-commerce & Online Transactions
    Description

    Zoopla Properties Listing dataset to explore detailed property information, including pricing, location, and features. Popular use cases include real estate market analysis, property valuation, and investment research.

    Use our Zoopla Properties Listing Information dataset to explore detailed property listings, including property details, pricing, location, and market trends across various regions. This dataset provides valuable insights into property valuations, consumer preferences, and real estate dynamics, enabling businesses and researchers to make data-driven decisions.

    Tailored for real estate professionals, investors, and market analysts, this dataset supports market trend analysis, property valuation assessments, and investment strategy development. Whether you're evaluating property investments, tracking market conditions, or conducting competitive analysis, the Zoopla Properties Listing Information dataset is a key resource for navigating the real estate landscape.

    Dataset Features

    • url: The original listing URL on Zoopla.
    • property_type: Type of property (e.g., Flat, Detached, Terraced).
    • property_title: Title or headline of the listing.
    • address: Full postal address of the property.
    • google_map_location: Geographical coordinates (latitude, longitude).
    • virtual_tour: Link to a virtual walkthrough or 360° tour.
    • street_view: Link to the Google Street View of the property.
    • url_property: Zoopla-specific property page URL.
    • currency: Currency in which the property is priced.
    • deposit: Security deposit required (typically for rentals).
    • letting_arrangements: Letting details (e.g., short-term, long-term).
    • breadcrumbs: Category breadcrumbs for location and type navigation.
    • availability: Availability status (e.g., Available now, Under offer).
    • commonhold_details: Information about commonhold ownership.
    • service_charge: Annual service charge (for leasehold properties).
    • ground_rent: Annual ground rent cost.
    • time_remaining_on_lease: Lease duration remaining in years.
    • ecp_rating: Energy Performance Certificate rating.
    • council_tax_band: Council tax band.
    • price_per_size: Price per square meter or foot.
    • tenure: Tenure type (Freehold, Leasehold, etc.).
    • tags: Descriptive tags (e.g., New build, Chain-free).
    • features: List of property features (e.g., garden, garage, en-suite).
    • property_images: URLs to property photos.
    • additional_links: Other related links (e.g., brochures, agents).
    • listing_history: Changes in price, listing dates, and status over time.
    • agent_details: Information about the listing agent or agency.
    • points_ofInterest: Nearby landmarks or facilities (schools, transport).
    • bedrooms Number of bedrooms.
    • price: Listed price of the property.
    • bathrooms: Number of bathrooms.
    • receptions: Number of reception rooms (living, dining, etc.).
    • country_code: Country code of the listing (e.g., GB for UK).
    • energy_performance_certificate: Detailed EPC documentation or summary.
    • floor_plans: URL or data related to property floor plans.
    • description: Detailed property description from the listing.
    • price_per_time: Price frequency for rentals (e.g., per week, per month).
    • property_size: Area of the property (in sq ft or sq m).
    • market_stats_last_12_months: Market stats for the area over the past year.
    • market_stats_renta_opportunities: Data on rental yields and opportunities.
    • market_stats_recent_sales_nearby: Sales history for nearby properties.
    • market_stats_rental_activity: Local rental activity trends.
    • uprn: Unique Property Reference Number for UK properties.
    • listing_label: Label/category of the listing.

    Distribution

    • Data Volume: 44 Columns and 95.92K Rows
    • Format: CSV

    Usage

    This dataset is ideal for a variety of high-impact applications:

    • Property Valuation Models: Train ML models to estimate market value using features like size, location, and amenities.
    • Real Estate Market Analysis: Identify pricing trends, demand patterns, and neighbourhood growth over time.
    • Investment Research: Analyse rental yields, price per square foot, and historical price changes for investment opportunities.
    • Recommendation Systems: Develop intelligent recommendation engines for property buyers and renters.
    • Urban Planning & Policy Making: Use location and infrastructure data to guide city development.
    • Sentiment & Description Analysis: NLP-driven insights from listing descriptions and agent narratives.

    Coverage

    • Geographic Coverage: Global
    • Time Range: Ongoing collection; historical data may span multiple years

    License

    CUSTOM

    Please review the respective licenses below:

    1. Data Provider's License
      -
  17. C

    Property value (Sales price per m2)

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Property value (Sales price per m2) [Dataset]. https://ckan.mobidatalab.eu/dataset/jusmggrouqnb0g
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/shp(20), http://publications.europa.eu/resource/authority/file-type/htmlAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Description

    The sales price and the floor area of ​​each house sold in Amsterdam is known to the Land Registry for each address and has been supplied to the Spatial Planning and Sustainability Department via the Department of Research, Information and Statistics of the Municipality of Amsterdam for the purpose of creating the Housing Value Map. In a Geographic Information System (GIS) all transaction addresses are shown as points on the map and the price per m2 of each point is calculated (= sales price / m2 floor area). Extreme values ​​have been removed. An interpolation method, in which there must be at least 2 transaction addresses within a radius of 300 metres, creates the Property Value Cards. On this Housing Value Map, the blue areas mean that you get a lot of housing for your money there. The houses in the red areas are apparently (very) popular for aspects other than the floor space of the house: the level of facilities, the proximity of the historic centre, the public space, the building type or the living environment. The Housing Value Map is therefore an exceptionally good indication of the valuation of a neighbourhood.

  18. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  19. Housing Availability Rates

    • hub.arcgis.com
    Updated Dec 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Housing Availability Rates [Dataset]. https://hub.arcgis.com/maps/ee9bc2ca453646fd934e047348c6ae8a
    Explore at:
    Dataset updated
    Dec 14, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Only a small fraction of vacant housing units are actually considered available. Only vacant units for rent or for sale make up the available housing stock. Vacant housing that is not on the market, such as homes for seasonal, recreational, or occasional use & housing for migrant workers, are not part of the available housing stock.The housing availability rate is an indicator that economists and housing policy analysts often track. A low housing availability rate indicates a "tight" housing market (a seller's market or landlord's market) whereas a high housing availability rate indicates a buyer's or renter's market.This map shows the housing availability rate depicted by the color: pink indicates a low housing availability rate, and green indicates a high housing availability rate. The count of available housing units is depicted by the size of the symbol.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  20. F

    Real Residential Property Prices for Mexico

    • fred.stlouisfed.org
    json
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for Mexico [Dataset]. https://fred.stlouisfed.org/series/QMXR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Mexico
    Description

    Graph and download economic data for Real Residential Property Prices for Mexico (QMXR628BIS) from Q1 2005 to Q4 2024 about Mexico, residential, HPI, housing, real, price index, indexes, and price.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a
Organization logo

2011 11: Travel Time and Housing Price Maps: 390 Main Street

Explore at:
Dataset updated
Nov 16, 2011
Dataset provided by
Metropolitan Transportation Commission
Authors
MTC/ABAG
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

Search
Clear search
Close search
Google apps
Main menu