Facebook
TwitterAverage weekday traffic counts (AWT) are collected at count stations throughout the city and represent the daily average for Monday-Friday traffic volume. Count stations in the eastern section of the city are collected in even numbered years, while those in the city's western section are collected in odd numbered years. Field descriptions/definitions for traffic count data as follows: ObjectID: GIS auto-generated unique identifiermslink: mslink of street segmentsegment_na: street segment nameSTATION: count station numberSOURCE: designates segment with counter or linkedSTATION: volume count station numberSOURCE: volume count station or linked segmentAWT_Count: most recent average weekday traffic countAWT_Yr: year of most recent countShape: GIS geometry typeYear_Txt: year of most recent count (text field)Shape.STLength(): GIS calculated segment length
Facebook
TwitterThis dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary
Facebook
TwitterThis dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.For more information, please visit MDOT Traffic Monitoring Program.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.
Facebook
TwitterWeb application for traffic flows for state road networks.
Traffic flows show the total traffic of motor vehicles and truck traffic with different bandwidths where the width of the bands is proportional to the average annual traffic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City of Phoenix Street Transportation Department Traffic Volumes
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying an à la carte traffic section with a click (the file links are displayed in the descriptive table that is displayed upon click): • Historical aggregate data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) This third party metadata element was translated using an automated translation tool (Amazon Translate).
Facebook
TwitterAverage annual weekday traffic volumes used to produce the SDOT Traffic Flow Map
Facebook
TwitterDisplays vehicle traffic volumes for arterial streets in Seattle based on spot studies that have been adjusted for seasonal variation. Data is a one time snapshot for 2022 and is maintained by Seattle Department of Transportation.Contact: Traffic OperationsRefresh Cycle: None, Snapshot for 2022 Only.
Facebook
TwitterAnnual average daily traffic is the total volume for the year divided by 365 days. The traffic count year is from October 1st through September 30th. Very few locations in California are actually counted continuously. Traffic Counting is generally performed by electronic counting instruments moved from location throughout the State in a program of continuous traffic count sampling. The resulting counts are adjusted to an estimate of annual average daily traffic by compensating for seasonal influence, weekly variation and other variables which may be present. Annual ADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates. planning and designing highways and other purposes.Traffic Census Program Page
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive map displaying average road traffic volumes for a selection of permanent Roads and Maritime Services roadside collection device stations across NSW. Figures will be updated annually.
Facebook
TwitterThis is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
Facebook
TwitterAverage Daily Weekday Traffic (ADWT) is the average number of vehicles in 24 hours adjusted for seasonal variation to represent the average weekday. The number on this map represents two-way totals. Volume on Provincial roads are provided by Alberta Transportation as a Weighted Average Annual Daily Traffic(WAADT). This traffic flow map is intended to be a general representation of traffic volumes across the city. Traffic volumes shown are based on 2023 data and may reflect prevailing conditions including construction, detours, and operating conditions in place during the year. The City of Calgary provides this information in good faith but provides no warranty, nor accepts any liability arising from any incorrect, incomplete or misleading information or its improper use. If you have any questions, require clarification or would like more details on this data, please call 311. Additional information can be found at: https://www.calgary.ca/planning/transportation/traffic-volume-flow-maps.html More information about Calgary's Traffic Counts system is available at: https://www.calgary.ca/planning/transportation/traffic-counts.html?redirect=/caltracs
Facebook
TwitterThe map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.ArcGIS Online organization subscriptionImportant Note:The World Traffic map service is available for users with an ArcGIS Online organizational subscription. To access this map service, you'll need to sign in with an account that is a member of an organizational subscription. If you don't have an organizational subscription, you can create a new account and then sign up for a 30-day trial of ArcGIS Online.
Facebook
TwitterPoints representing the locations of traffic volume counts in the City of Portland. Attributes include information on the methodology and duration of the counts, and the results.-- Additional Information: Category: Transportation - Right of Way Management Purpose: For mapping and analysis of traffic volumes in Portland. Update Frequency: Weekly-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=53246
Facebook
TwitterThis dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit in 2019. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.For more information, please visit MDOT Traffic Monitoring Program.
Facebook
TwitterWith the forecast increase in air traffic demand over the next decades, it is imperative to develop tools to provide traffic flow managers with the information required to support decision making. In particular, decision-support tools for traffic flow management should aid in limiting controller workload and complexity, while supporting increases in air traffic throughput. While many decision-support tools exist for short-term traffic planning, few have addressed the strategic needs for medium- and long-term planning for time horizons greater than 30 minutes. This paper seeks to address this gap through the introduction of 3D aircraft proximity maps that evaluate the future probability of presence of at least one or two aircraft at any given point of the airspace. Three types of proximity maps are presented: presence maps that indicate the local density of traffic; conflict maps that determine locations and probabilities of potential conflicts; and outliers maps that evaluate the probability of conflict due to aircraft not belonging to dominant traffic patterns. These maps provide traffic flow managers with information relating to the complexity and difficulty of managing an airspace. The intended purpose of the maps is to anticipate how aircraft flows will interact, and how outliers impact the dominant traffic flow for a given time period. This formulation is able to predict which "critical" regions may be subject to conflicts between aircraft, thereby requiring careful monitoring. These probabilities are computed using a generative aircraft flow model. Time-varying flow characteristics, such as geometrical configuration, speed, and probability density function of aircraft spatial distribution within the flow, are determined from archived Enhanced Traffic Management System data, using a tailored clustering algorithm. Aircraft not belonging to flows are identified as outliers.
Facebook
TwitterThe census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.
Facebook
TwitterNebraska DOT Average Annual Daily Traffic Flow segments. The data is reported bi-annually, with the first year in the application being 2016. A filter gives users the ability to see the features for the desired traffic count year. The filter is applied to 2018 (the most recent) traffic count year by default. When the filter is turned off, the user can easily scroll through the identified features pop-up to compare the count values for individual years.
Facebook
TwitterAverage Daily Weekday Traffic (ADWT) is the average number of vehicles in 24 hours adjusted for seasonal variation to represent the average weekday. The number on this map represents two-way totals.
Volume on Provincial roads are provided by Alberta Transportation as a Weighted Average Annual Daily Traffic(WAADT).
This traffic flow map is intended to be a general representation of traffic volumes across the city. Traffic volumes shown are based on 2022 data and may reflect prevailing conditions including construction, detours,
and operating conditions in place during the year.
The City of Calgary provides this information in good faith but provides no warranty, nor accepts any liability arising from any incorrect, incomplete or misleading information or its improper use. If you have any questions, require clarification or would like more details on this data, please call 311.
Additional information can be found at: https://www.calgary.ca/Transportation/TP/Pages/Planning/Transportation-Data/Traffic-volume-flow-maps.aspx
More information about Calgary's Traffic Counts system is available at: https://www.calgary.ca/Transportation/TP/Pages/Planning/Transportation-Data/Calgary-Traffic-Counts-System.aspx?redirect=/caltracs
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterAverage weekday traffic counts (AWT) are collected at count stations throughout the city and represent the daily average for Monday-Friday traffic volume. Count stations in the eastern section of the city are collected in even numbered years, while those in the city's western section are collected in odd numbered years. Field descriptions/definitions for traffic count data as follows: ObjectID: GIS auto-generated unique identifiermslink: mslink of street segmentsegment_na: street segment nameSTATION: count station numberSOURCE: designates segment with counter or linkedSTATION: volume count station numberSOURCE: volume count station or linked segmentAWT_Count: most recent average weekday traffic countAWT_Yr: year of most recent countShape: GIS geometry typeYear_Txt: year of most recent count (text field)Shape.STLength(): GIS calculated segment length