NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
NASA's Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Land Cover Mapping and Estimation (GLanCE) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management. The GLanCE data product provides seven layers: the land cover class, the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.Known Issues Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs.* The GlanCE data product tends to modestly overpredict developed land cover in arid regions.
Human use of the land has a large effect on the structure of terrestrial ecosystems and the dynamics of biogeochemical cycles. For this reason, terrestrial ecosystem and biogeochemistry models require moderate resolution information on land use in order to make realistic predictions. Few such datasets currently exist.
This collection consists of output from models that estimate the spatial pattern of land use in four land-use categories by relating a high-resolution land-cover dataset to state-level census data on land use. The models have been parameterized using a goodness-of-fit measure.
The land cover product used was from the IGBP DISCover global product, derived from 1 km AVHRR imagery, with 16 land cover classes (Belward et al., 1999). Land-use data at state-level resolution came from the USDA's Major Land Uses database (USDA, 1996), aggregated into the four general land-use categories described below.
The model was used to generate maps of land use in 1992 for the conterminous U.S. at 0.5 degree spatial resolution. Two different parameterization schemes were used to spatially interpolate land use from land cover, based on the state-level land use census data: 1) a National Parameterization, and 2) a Regional Parameterization.
For the National Parameterization, a single parameterization relating aggregate land cover and state-level land use. For the Regional Parameterization, a separate parameterization was used for each of seven different regions. The seven regions include: Northeast, Southeast, East North-central, West North-central, Southern Plains, Mountain, and Pacific. These regions are substantially different in terms of land use and land cover. In both cases, the results are a nationally gridded map at 0.5 degrees of land use categories for cropland, pasture/range, forest, and other land use; the other land use category is also further spilt into three additional subcategories (forested, non-forested, non-vegetated).
This project is currently being extended to other regions of the globe, and for other time periods, where both land use census data and image-derived land cover data are available.
Available Datasets:
1) US Land Use - 1992 National Parameterization 2) US Land Use - 1992 Regional Parameterization
Each dataset has 4 major land use categories and 3 subcategories of the Other major land use category.
This is the web map that is used in the U.S. Fish &Wildlife Service's Alaska Region online portal for 1:30,000 scale geoPDF topographic maps of the National Wildlife Refuges within the state of Alaska.The maps accessible via the online portal cover 100% of the Alaska National Wildlife Refuges, for a total of 604 maps. Each map covers an area 25 miles east/west by 25 miles north/south, for a total of 625 square miles per map sheet. The maps display land ownership within the Refuges, as well as Refuge and Wilderness boundaries, and towships and ranges (the Public Land Survey System , or PLSS), all overlaid on top of U.S. Geological Survey 1:63,360 scale hillshaded topographic maps.These maps are in the geoPDF format, which is the standard Adobe PDF format, with the addition of geographic referencing information embedded in the file. This allows the user to load the maps into a GPS-enabled mobile device (phone, tablet, etc.) for reference, navigation, and data-recording in the field, without the need for a cell phone connection.
The statewide dataset contains a combination of land cover mapping from 2016 aerial imagery and land use derived from standardized assessor parcel information for Massachusetts. The data layer is the result of a cooperative project between MassGIS and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). Funding was provided by the Mass. Executive Office of Energy and Environmental Affairs.
This land cover/land use dataset does not conform to the classification schemes or polygon delineation of previous land use data from MassGIS (1951-1999; 2005).In this map service layer hosted at MassGIS' ArcGIS Server, all impervious polygons are symbolized by their generalized use code; all non-impervious land cover polygons are symbolized by their land cover category. The idea behind this method is to use both cover and use codes to provide a truer picture of how land is being used: parcel use codes may indicate allowed or assessed, not actual use; land cover alone (especially impervious) does not indicate actual use.
See the full datalayer description for more details.This map service is best displayed at large (zoomed in) scales. Also available are a Feature Service and a Tile Service (cache). The tile cache will display very quickly in in ArcGIS Online, ArcGIS Desktop, and other applications that can consume tile services.
[Metadata] Description: Agricultural Land Use Maps (ALUM) for islands of Kauai, Oahu, Maui, Molokai, Lanai and Hawaii as of 1978-1980. Sources: State Department of Agriculture; Hawaii Statewide GIS Program, Office of Planning. Note: August, 2018 - Corrected one incorrect record, removed coded value attribute domain.For more information on data sources and methodologies used, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/alum.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
High resolution (30 m) land cover and cropping maps in GeoTIFF format for two main rice types in northern Bangladesh, dry season Boro rice (January to May) and wet season Aman rice (October to January) for the cropping seasons of 1989–1990 to 2015–2016. Other land cover types include other vegetated type, water, water non-permanent, and bare. The values in the Boro season are as follows: 10 represents Boro, 11 and 13 represent other vegetated areas, 14 represents water, 15 represents water non-permanent and 16 represents bare. The values in the Aman season are as follows: 20 represents Aman, 23 represents other vegetated areas, 24 represents water, 25 represents water non-permanent and 26 represents bare. Value 0 is a null value in both rice season maps. Associated GeoTIFF maps show the number of months missing in each pixel per mapping season per cropping year (using the unfilled monthly composite images) as a guide for quality. Lineage: The data used to produce the maps encompassed nearly three decades of Landsat TM/ETM+/OLI TOA reflectance data from several satellite platforms, sourced and pre-processed through the freely available petabyte archive and geostatistical processing power of Google Earth Engine. Geospatial techniques were used to reduce gaps in the data. A combination of unsupervised K-means clustering and supervised Random Forest Machine Learning algorithms were implemented to produce a predictive model that includes vegetation indices and other covariates, which explain the phenology of different land cover types.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a high resolution urban land cover classification map across the southern California Air Basin (SoCAB) with a spatial resolution of 60 cm in urban regions and 10 m in non-urban regions. This map was developed to support NASA JPL-based urban biospheric CO2 modeling in Los Angeles, CA. Land cover classification was derived from a novel fusion of Sentinel-2 (10-60 m x 10-60 m) and 2016 NAIP (60 cm x 60 cm) imagery and provides identification of impervious surface, non-photosynthetic vegetation, shrub, tree, grass, pools and lakes.
Land Cover Classes in .tif file: 0: Impervious surface 1: Tree (mixed evergreen/deciduous) 2: Grass (assumed irrigated) 3: Shrub 4: Non-photosynthetic vegetation 5: Water (masked using MNDWI/NDWI)
Google Earth Engine interactive app displaying this map: https://wcoleman.users.earthengine.app/view/socab-irrigated-classification
A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the Earth Science Division OCO-2 program is acknowledged. Copyright 2020. All rights reserved.
The dataset is land use land cover maps on bowé in Benin.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
Detailed land-cover mapping is essential for a range of research issues addressed by sustainability science, especially for questions posed of urban areas, such as those of the Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) program. This project provides a 1-meter land-cover mapping of the CAP LTER study area (greater Phoenix metropolitan area and surrounding Sonoran desert). The mapping is generated primarily using 2015 National Agriculture Imagery Program (NAIP) four-band data, with auxiliary GIS data used to improve accuracy. Auxiliary data include the 2015 cadastral parcel data, the 2014 USGS LiDAR data (1-meter), the 2014 Microsoft/OpenStreetMap Building Footprint data, the 2015 Street TIGER/Line, and a previous (2010) NAIP-based land-cover map of the study area (https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-cap&identifier=623). Among auxiliary data, building footprints and LiDAR data significantly improved the boundary detection of above-ground objects. Post-classification, manual editing was applied to minimize classification errors. As a result, the land-cover map achieves an overall accuracy of 94 per cent. The map contains eight land cover classes, including: (1) building, (2) asphalt, (3) bare soil and concrete, (4) tree and shrub, (5) grass, (6) water, (7) active cropland, and (8) fallow. When compared to the aforementioned, previous (2010) NAIP-based land-cover map for the study area, buildings and tree canopies are classified more accurately in this 2015 land-cover map.
Land Cover Map 2021 (LCM2021) is a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2021. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2021. Land cover maps describe the physical material on the surface of the country. For example grassland, woodland, rivers & lakes or man-made structures such as roads and buildingsThis is a 10 m Classified Pixel dataset, classified to create a single mosaic of national cover. Provenance and quality:UKCEH’s automated land cover classification algorithms generated the 10m classified pixels. Training data were automatically selected from stable land covers over the interval of 2017 to 2019. A Random Forest classifier used these to classify four composite images representing per season median surface reflectance. Seasonal images were integrated with context layers (e.g., height, aspect, slope, coastal proximity, urban proximity and so forth) to reduce confusion among classes with similar spectra.Land cover was validated by organising the pixel classification into a land parcel framework (the LCM2021 Classified Land Parcels product). The classified land parcels were compared to known land cover producing confusion matrix to determine overall and per class accuracy.View full metadata information and download the data at catalogue.ceh.ac.uk
This web map service (WMS) is the 25m raster version of the Land Cover Map 2015 (LCM2015) for Great Britain and Northern Ireland. It shows the target habitat class with the highest percentage cover in each 25m x 25m pixel. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats.The 25m raster web map service is the most detailed of the LCM2015 raster products, both thematically and spatially, and it is derived from the LCM2015 vector product. For LCM2015 per-pixel classifications were conducted, using a random forest classification algorithm. The resultant classifications were then mosaicked together, with the best classifications taking priority. This produced a per-pixel classification of the UK, which was then 'imported' into the spatial framework, recording a number of attributes, including the majority class per polygon which is the Land Cover class for each polygon.Find out more about Land Cover Map 2015 at ceh.ac.uk.LCM2015 is available for download to Catchment Based Approach (CaBA) Partnerships in the desktop GIS data package. Please contact your CaBA catchment host for further information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The Catchment Scale Land Use of Australia – Update December 2023 dataset is the national compilation of catchment scale land use data available for Australia (CLUM), as of December 2023. It replaces the Catchment Scale Land Use of Australia – Update December 2020. It is a seamless raster dataset that combines land use data for all state and territory jurisdictions, compiled at a resolution of 50 metres by 50 metres. The CLUM data shows a single dominant land use for a given area, based on the primary management objective of the land manager (as identified by state and territory agencies). Land use is classified according to the Australian Land Use and Management Classification version 8. It has been compiled from vector land use datasets collected as part of state and territory mapping programs and other authoritative sources, through the Australian Collaborative Land Use and Management Program. Catchment scale land use data was produced by combining land tenure and other types of land use information including, fine-scale satellite data, ancillary datasets, and information collected in the field. The date of mapping (2008 to 2023) and scale of mapping (1:5,000 to 1:250,000) vary, reflecting the source data, capture date and scale. Date and scale of mapping are provided in supporting datasets.
Currency Date modified: December 2023 Date Published: June 2024 Modification frequency: As needed (approximately annual) Data Extent Coordinate reference: WGS84 / Mercator Auxiliary Sphere Spatial Extent North: -9.995 South: -44.005 East: 154.004 West: 112.505 Source information Data, Metadata, Maps and Interactive views are available from Catchment Scale Land Use of Australia - Update 2023 Catchment Scale Land Use of Australia - Update 2023 – Descriptive metadata The data was obtained from Department of Agriculture, Fisheries and Forestry - Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). ABARES is providing this data to the public under a Creative Commons Attribution 4.0 license. Lineage Statement This catchment scale land use dataset provides the latest compilation of land use mapping information for Australia’s regions as at December 2023. It is used by the Department of Agriculture, Fisheries and Forestry, state agencies and regional natural resource management groups to address issues such as agricultural productivity and sustainability, biodiversity conservation, biosecurity, land use planning, natural disaster management and natural resource monitoring and investment. The data vary in date of mapping (2008 to 2023) and scale (1:5,000 to 1:250,000). 2023 updates include more current data and/or reclassification of existing data. The following areas have updated data since the December 2020 version:
New South Wales (2017 v1.5 from v1.2). Northern Territory (2022 from 2020). Tasmania (2021 from 2019). Victoria (2021 from 2017). Data were also added from the Great Barrier Reef Natural Resource Management (NRM) regions in Queensland (2021 from a variety of dates 2009 to 2017). the Australian Tree Crops. Australian Protected Cropping Structures and Queensland Soybean Crops maps as downloaded on 30 November 2023. The capital city of Adelaide was updated using 2021 mesh block information from the Australian Bureau of Statistics. Minor reclassifications were made for Western Australia and mining area within mining tenements more accurately delineated in South Australia.
Links to land use mapping datasets and metadata are available at the ACLUMP data download page at agriculture.gov.au. State and territory vector catchment scale land use data were produced by combining land tenure and other types of land use information, fine-scale satellite data and information collected in the field, as outlined in 'Guidelines for land use mapping in Australia: principles, procedures and definitions, 4th edition' (ABARES 2011). The Northern Territory, Queensland, South Australia, Tasmania, Victoria and Western Australia were mapped to version 8 of the ALUM classification (‘The Australian Land Use and Management Classification Version 8’, ABARES 2016). The Australian Capital Territory was mapped to version 7 of the ALUM classification and converted to version 8 using a look-up table based on Appendix 1 of ABARES (2016). Purpose for which the material was obtained: This catchment scale land use dataset provides the latest compilation of land use mapping information for Australia’s regions as at December 2023. It is used by the Department of Agriculture, Fisheries and Forestry, state agencies and regional natural resource management groups to address issues such as agricultural productivity and sustainability, biodiversity conservation, biosecurity, land use planning, natural disaster management and natural resource monitoring and investment. The data vary in date of mapping (2008 to 2023) and scale (1:5,000 to 1:250,000). Do not use this data to:
Derive national statistics. The Land use of Australia data series should be used for this purpose. Calculate land use change. The Land use of Australia data series should be used for this purpose.
It is not possible to calculate land use change statistics between annual CLUM national compilations as not all regions are updated each year; land use mapping methodologies, precision, accuracy and source data and satellite imagery have improved over the years; and the land use classification has changed over time. It is only possible to calculate change when earlier land use datasets have been revised and corrected to ensure that changes detected are real change and not an artefact of the mapping process. Note: The Digital Atlas of Australia downloaded and created a copy of the source data in October 2024 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster was created with RGB fields as a colour map with Geoprocessing tools in ArcPro. Note: The Digital Atlas of Australia downloaded and created a copy of the source data in February 2025 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster dataset was created with RGB fields as a colour map with Geoprocessing tools in ArcPro, and the raster dataset was re-projected from 1994 Australia Albers to WGS 1984 Web Mercator (Auxiliary Sphere). Data dictionary
Attribute name Description
OID Internal feature number that uniquely identifies each row.
Service Pixel value (Scale) The scale at which land use was mapped in the vector catchment scale land use data provided by state and territory agencies or others:1:5,000, 1:10,000, 1:20,000, 1:25,000, 1:50,000, 1:100,000 or 1:250,000
Count Count of the number of raster cells in each class of VALUE.
Label Reflecting the scale of the source data ranges from 1:5,000 to 1:250,000
Contact Department of Agriculture, Fisheries and Forestry (ABARES), info.ABARES@aff.gov.au
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
This dataset (2020-2023) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- Northwest Florida Water Management District (NWFWMD) 2022.Bay (1/4/2022 – 3/24/2022), Calhoun (1/7/2022 – 1/18/2022), Escambia (11/13/2021 – 1/15/2021), Franklin (1/7/2022 – 1/18/2022), Gadsden (1/7/2022 – 1/16/2022), Gulf (1/7/2022 – 1/14/2022), Holmes (1/8/2022 – 1/18/2022), Jackson (1/7/2022 – 1/14/2022), Jefferson (1/7/2022 – 2/16/2022), Leon (February 2022), Liberty (1/7/2022 – 1/16/2022), Okaloosa (10/31/2021 – 2/13/2022), Santa Rosa (10/26/2021-1/17/2022), Wakulla (1/7/2022 – 1/14/2022), Walton (1/7/2022-1/14/2022), Washington (1/13/2022 – 1/19/2022).Suwannee River Water Management District (SRWMD) 2022-2023.(Alachua (12/27/2022-12/28/2022, Baker (1/6/2023-1/15/2023), Bradford (11/9/2021-11/16/2021), Columbia (12/17/2021-1/29/2022), Gilchrist (12/17/2021-1/29/2022), Levy (12/17/2021-1/29/2022), Suwannee (12/17/2021-1/29/2022), Union (11/9/2021-11/9/2021).(Dixie 12/17/2021-01/29/2022), (Hamilton 12/17/2021-01/29/2022), (Jefferson 01/07/2022-02/16/2022), (Lafayette 12/17/2021-01/29/2022), (Madison 12/17/2021-01/29/2022), (Taylor 12/17/2021-01/29/2022).Southwest Florida Water Management District (SWFWMD) 2023. South Florida Water Management District (SFWMD) 2021-2023.St. John's River Water Management District (SJRWMD) 2020.Year Flight Season Counties:2020 (Dec. 2019 - Mar 2020) Alachua, Baker, Clay, Flagler, Lake, Marion, Osceola, Polk, Putnam.2021 (Dec. 2020 - Mar 2021) Brevard, Indian River, Nassau, Okeechobee, Orange, St. Johns, Seminole, Volusia. 2022 (Dec. 2021 - Mar 2022) Bradford, Union. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences by each of the Water Management Districts.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
MethodThis dataset includes a detailed example for using our method (described in paper linked to below) to digitize historical land-use maps in R.MapsWe also release all of the Swedish land-use maps that we digitized for this project. This includes the Economic Map of Sweden (Ekonomiska kartan) over Sweden's 15 southernmost counties (7069 25 km2 sheets), plus 11 sheets of the District Economic Map (Häradsekonomiska kartan - but see http://bolin.su.se/data/Cousins-2015 for more accurate manual digitization).SvenskaHär kan du ladda ner 7069 Ekonomiska kartblad som vi digitaliserade över södra Sverige. En kort beskrivning av metoden publicerades i tidningen Kart & Bildteknik (se länk nedan).--UpdatesVersion 2: The digitized Economic Maps have been resampled so that they are all at a 1m resolution. In the original version they were all very close to 1m but not exactly the same, which made mosaicking difficult. This should be easier now. We now also link to the published paper in Methods in Ecology and Evolution.For more information, please see the readme file. For help or collaboration, please contact alistair.auffret@natgeo.su.se. If you use the data here in your work or research, please cite the publication appropriately.
https://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0
Background and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region.
Acknowledgements
Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.