Facebook
TwitterThe "Map Imager Layer - Administrative Boundaries" is a Map Image Layer of Administrative Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Administrative Boundaries Data Group contains the following layers: Populated Places (USGS)US Census Urbanized Areas and Urban Clusters (USCB)US Census Minor Civil Divisions (USCB)PLSS Townships (MnDNR, MnGeo)Counties (USCB)American Indian, Alaska Native, Native Hawaiian (AIANNH) Areas (USCB)States (USCB)Countries (MPCA)These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Administrative Boundary Dataset please see:United States Census Bureau TIGER/Line Shapefiles and TIGER/Line Files Technical Documentation: https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.htmlUnited States Census Bureau Census Mapping Files: https://www.census.gov/geographies/mapping-files.htmlUnited States Census Bureau TIGER/Line Shapefiles: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html and https://www.census.gov/cgi-bin/geo/shapefiles/index.php
Facebook
TwitterThese data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Facebook
TwitterFollow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.
Facebook
TwitterThe feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only trails with the symbol value of 5-12, 16, 17 are Forest Service System trails and contain data concerning their availability for motorized use. This data is published and refreshed on a unit by unit basis as needed. Individual unit's data must be verified and proved consistent with the published MVUMs prior to publication in the EDW. Click this link for full metadata description: Metadata _
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes.
Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
Facebook
TwitterThe Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
Twitterlayers used for maps in the report including in the appendix. Includes surveyed flood level results etc
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterThe Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. This version of the map is rendered in a style similar to the Esri Street Map (with Relief). It includes the World Hillshade layer. Created from the sunsetted Daylight map distribution, data updates supporting this layer are no longer available. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project. Precise Tile Registration: The web map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The City of Ferndale’s Multi-Modal Plan presents a vision on how to improve and expand on opportunities for pedestrians, bicycles and transit users. It is in response to the growing demand for alternative forms of travel and the need to improve safety of those who choose to walk, bike or take transit. The plan looks at how the City may transform its streets into outstanding public spaces that are friendly to pedestrians, integrate facilities for bicyclists and transit users while continuing to serve the needs of motorized traffic. Ferndale’s vibrant downtown, surrounded by close-in residential areas on a tight grid of streets, provides an enviable foundation to build upon. Most residents are within convenient walking and bicycling distance to the majority of destinations in the city. This plan provides the guidance on how to capitalize on that good fortune and make Ferndale an outstanding walkable, bikable and transit friendly community. This map contains multiple layers of maps also available on the Ferndale Moves website, http://ferndalemoves.com/
Facebook
TwitterThis National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterThis map provides a colorized representation of slope, generated dynamically using server-side slope function on the Terrain layer. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. Note: If access to non-scaled slope values is required, use the Slope Degrees or Slope Percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope Percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map is one of a series of soil landscape maps that are intended for all of eastern and central NSW, based on standard 1:100,000 or 1:250,000 topographic sheets. The map provides an inventory of soil and landscape properties of the Blackville area and identifies major soil and landscape qualities and constraints. It integrates soil and topographic features into single units with relatively uniform land management requirements. Soils are described in terms of soil materials in addition to Australian Soil Classification and Great Soil Group systems. Related Datasets: The dataset area is also covered by the mapping of the Soil and Land Resources of the Liverpool Plains Catchment and Hydrogeological landscapes of NSW. Online Maps: This and related datasets can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area. Reference: Banks RG, 1998, Soil Landscapes of the Blackville 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Ecosystem Mapping Layer was created by the Taranaki Regional Council to support the identification and analysis of potential ecosystems and associated threat categories within the region. The dataset combines multiple data sources to provide accurate spatial information essential for conservation planning and ecosystem management. This layer aids in the understanding of regional ecosystems and the threats they face, contributing to informed decision-making in environmental monitoring and resource management.Title: Ecosystem Mapping LayerDate created: 05/10/2020Last updated: 12/02/2024Layers:Potential Ecosystems: Feature layer representing the distribution of potential ecosystems in the region.Potential Ecosystem Threat Categories: Feature layer identifying the threat levels faced by different ecosystems.Purpose: To provide accurate spatial data on potential ecosystems and their associated threats for environmental conservation and resource management in the Taranaki Region.Language: EnglishFormat: Vector (Polygon)Type: Feature LayerSpatial Coverage: Taranaki Region, New ZealandProjection: NZGD2000 / New Zealand Transverse Mercator 2000Source: Derived from multiple environmental data sources and updated with aerial photography for accuracy.Version Control: v1.0
Facebook
TwitterArcGIS Online map preloaded with many commonly used GIS data layers.This map can be used as a template to make new online maps so that they contain these common layers or can be used on-the-fly to customize a map with the needed layers and answer a simple question or problem. This map is also preset to be a PLSS locator with the sections layer turned on (at a set extent) to displays the Township, Range & Section information in the popup window when clicked.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Vantor imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Vantor products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Vantor Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Vantor HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map. UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterWorcester Atlas is an interactive map viewer developed by the City of Worcester that gives the public access to city map layers and data, including property-specific assessor data.Users can search for property data by address, street, owner, or property ID, turn on/off map layers, get more information about certain layers in map popups, print maps, and more.More information: Visit the Introducing Worcester Atlas data story to get to know more about the City's map viewer.Informing Worcester is the City of Worcester's open data portal where interested parties can obtain public information at no cost.
Facebook
TwitterThe "Map Imager Layer - Administrative Boundaries" is a Map Image Layer of Administrative Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Administrative Boundaries Data Group contains the following layers: Populated Places (USGS)US Census Urbanized Areas and Urban Clusters (USCB)US Census Minor Civil Divisions (USCB)PLSS Townships (MnDNR, MnGeo)Counties (USCB)American Indian, Alaska Native, Native Hawaiian (AIANNH) Areas (USCB)States (USCB)Countries (MPCA)These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Administrative Boundary Dataset please see:United States Census Bureau TIGER/Line Shapefiles and TIGER/Line Files Technical Documentation: https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.htmlUnited States Census Bureau Census Mapping Files: https://www.census.gov/geographies/mapping-files.htmlUnited States Census Bureau TIGER/Line Shapefiles: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html and https://www.census.gov/cgi-bin/geo/shapefiles/index.php