100+ datasets found
  1. a

    Base Mapping Web Mapping Services

    • communautaire-esrica-apps.hub.arcgis.com
    • insights-york.opendata.arcgis.com
    • +1more
    Updated Jul 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Regional Municipality of York (2018). Base Mapping Web Mapping Services [Dataset]. https://communautaire-esrica-apps.hub.arcgis.com/maps/b23fc2a155af4253be5beaf85927a993
    Explore at:
    Dataset updated
    Jul 26, 2018
    Dataset authored and provided by
    The Regional Municipality of York
    Area covered
    Description

    This web map service (WMS) contains a collection of data layers that make up base mapping for York Region. Layers included are waterbodies and rivers, roads, municipal boundaries, elevation, forestry, current imagery and historical imagery. Check out our complete guide to using all of our public Base Mapping Web Mapping Services!

  2. d

    Imagery and Map Services

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Imagery and Map Services [Dataset]. https://catalog.data.gov/dataset/imagery-and-map-services
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Department of Information Technology and Telecommunications, GIS Unit, has created a series of Map Tile Services for use in public web mapping & desktop applications. The link below describes the Basemap, Labels, & Aerial Photographic map services, as well as, how to utilize them in popular JavaScript web mapping libraries and desktop GIS applications. A showcase application, NYC Then&Now (https://maps.nyc.gov/then&now/) is also included on this page.

  3. m

    eAtlas Web Mapping Service (WMS) - Legacy MTSRF Server (AIMS)

    • demo.dev.magda.io
    • data.gov.au
    • +1more
    html
    Updated Oct 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (2023). eAtlas Web Mapping Service (WMS) - Legacy MTSRF Server (AIMS) [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-c37936d1-9979-44f0-a5f2-87e2933bb7c7
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 8, 2023
    Dataset provided by
    Australian Institute of Marine Science
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    The eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes …Show full descriptionThe eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes the legacy WMS. This service delivers map layers associated with the eAtlas project (http://eatlas.org.au), which contains map layers of environmental research focusing on the Great Barrier Reef. The majority of the layers corresponding to Glenn De'ath's interpolated maps of the GBR developed under the MTSRF program (2008-2010). This web map service is predominantly maintained for the legacy eAtlas map viewer (http://maps.eatlas.org.au/geoserver/www/map.html). All the these legacy map layers are available through the new eAtlas mapping portal (http://maps.eatlas.org.au), however the legends have not been ported across. This WMS is implemented using GeoServer version 1.7 software hosted on a server at the Australian Institute of Marine Science. For ArcMap use the following steps to add this service: "Add Data" then choose GIS Servers from the "Look in" drop down. Click "Add WMS Server" then set the URL to "http://maps.eatlas.org.au/geoserver/wms?" Note: this service has around 460 layers of which approximately half the layers correspond to Standard Error maps, which are WRONG (please ignore all *Std_Error layers. This services is operated by the Australian Institute of Marine Science and co-funded by the MTSRF program.

  4. Web Mapping Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Web Mapping Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/web-mapping-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Web Mapping Market Outlook



    The global web mapping market size was valued at approximately USD 3.5 billion in 2023 and is projected to reach USD 8.2 billion by 2032, growing at a compound annual growth rate (CAGR) of 9.8% during the forecast period. The robust growth of this market can be attributed to the increasing demand for geographic information system (GIS) technologies and the expanding applications of web mapping across various industries.



    One of the primary growth factors driving the web mapping market is the proliferation of location-based services. With the rise of smartphones and IoT devices, the demand for real-time location data has skyrocketed, fueling the need for advanced web mapping solutions. Businesses are leveraging location-based services to enhance customer engagement, optimize logistics, and improve decision-making processes. Moreover, the integration of web mapping with emerging technologies such as AI and machine learning is further bolstering market growth, allowing for more sophisticated and predictive mapping capabilities.



    Another critical factor contributing to the market's expansion is the growing adoption of web mapping solutions in government and public sector initiatives. Governments across the globe are increasingly utilizing web mapping technologies for urban planning, disaster management, and community services. These technologies provide invaluable insights and real-time data that aid in making informed decisions and improving public services. The push for smart city developments and the need for efficient infrastructure management are also significant drivers for the adoption of web mapping solutions in the public sector.



    Furthermore, the transportation and logistics industry is witnessing a substantial uptake of web mapping technologies. With the rise of e-commerce and the need for efficient supply chain management, companies are relying on web mapping to optimize routes, monitor shipments, and ensure timely deliveries. The integration of GPS technology and real-time tracking systems with web mapping solutions is enhancing operational efficiencies and reducing costs. This trend is likely to continue as the demand for seamless logistics and transportation services grows.



    The concept of an Electronic Map has become increasingly significant in the web mapping market. Electronic maps are digital representations of geographic areas and are pivotal in providing real-time data and location-based insights. They are extensively used in various applications, from navigation systems to urban planning and environmental monitoring. The integration of electronic maps with web mapping technologies allows for enhanced visualization and analysis of spatial data, offering users detailed and interactive geographic information. As the demand for digital mapping solutions continues to grow, electronic maps are playing a crucial role in transforming how geographic information is accessed and utilized across different sectors.



    On the regional front, North America remains a dominant player in the web mapping market, primarily due to the early adoption of advanced technologies and the presence of major market players in the region. The Asia Pacific region is expected to exhibit the highest growth rate during the forecast period, driven by rapid urbanization, technological advancements, and increasing investments in smart city projects. Europe and Latin America are also anticipated to witness significant growth, supported by favorable government initiatives and the expanding use of web mapping across various industries.



    Component Analysis



    The web mapping market can be segmented by component into software and services. The software segment encompasses a wide range of GIS and mapping software that enable users to create, visualize, and analyze geographic data. This segment is witnessing significant growth due to the increasing need for sophisticated mapping tools that offer real-time data and advanced analytical capabilities. Companies are continuously enhancing their software offerings with features like AI integration, cloud compatibility, and user-friendly interfaces, driving the adoption of web mapping software across various industries.



    On the other hand, the services segment includes a variety of professional services such as consulting, implementation, and maintenance. As organizations seek to leverage web mapping technologies, they often require expert guidance and support to ensu

  5. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  6. d

    GIS Web Services

    • catalog.data.gov
    • data.brla.gov
    • +1more
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2023). GIS Web Services [Dataset]. https://catalog.data.gov/dataset/gis-web-services
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.brla.gov
    Description

    A listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.

  7. OpenStreetMap

    • esriindia.hub.arcgis.com
    • esriaustraliahub.com.au
    • +46more
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri India SAAS App (2024). OpenStreetMap [Dataset]. https://esriindia.hub.arcgis.com/maps/671a954016794bef88b76ac215ec5fef
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri India SAAS App
    Description

    This web map references the live tiled map service from the OpenStreetMap (OSM) project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: https://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in ESRI products under a Creative Commons Attribution-ShareAlike license. Tip: This service is one of the basemaps used in the ArcGIS.com map viewer. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10. Tip: Here are some well known locations as they appear in this web map, accessed by launching the web map with a URL that contains location parameters: Athens, Cairo, Jakarta, Moscow, Mumbai, Nairobi, Paris, Rio De Janeiro, Shanghai

  8. H

    GeoServer Tutorials

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://www.hydroshare.org/resource/753127b14dd443a1a4f2cf9634835d7a
    Explore at:
    zip(14.4 MB)Available download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    HydroShare
    Authors
    Jacob Wise Calhoon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  9. C

    Cloud-Based Mapping Service Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Cloud-Based Mapping Service Report [Dataset]. https://www.datainsightsmarket.com/reports/cloud-based-mapping-service-1444773
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 29, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The cloud-based mapping service market is experiencing robust growth, driven by the increasing adoption of location-based services across various sectors. The convergence of advanced technologies like AI, IoT, and big data analytics is fueling demand for sophisticated mapping solutions capable of handling vast datasets and delivering real-time insights. Key application areas, such as connected ADAS (Advanced Driver-Assistance Systems) and highly automated driving, are significant contributors to market expansion, demanding high-precision, dynamic mapping capabilities. The shift towards cloud-based infrastructure offers scalability, cost-effectiveness, and accessibility advantages over traditional on-premise solutions, further accelerating market penetration. Different map types, including analytical, animated, collaborative, and online atlases, cater to diverse needs, creating a multifaceted market landscape. While data security and privacy concerns represent potential restraints, the market is poised for sustained growth due to continuous technological advancements and expanding application domains. We estimate the 2025 market size to be approximately $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is underpinned by continuous innovation in mapping technologies and the expanding adoption of location intelligence across various industries. The major players in this market, including ESRI, Pitney Bowes, and CARTO, are investing heavily in R&D to enhance their offerings and gain a competitive edge. Regional variations exist, with North America and Europe currently holding significant market share, primarily due to higher technological adoption rates and established infrastructure. However, Asia Pacific is anticipated to witness rapid growth in the coming years, driven by increasing urbanization and expanding digital economies. The competitive landscape is characterized by both established players and emerging innovative companies striving for market dominance. This competitive dynamic is driving innovation and pushing the boundaries of what's possible with cloud-based mapping services, further contributing to the market's overall growth trajectory.

  10. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  11. GIBS Tiled Web Mapping Service (TWMS)

    • catalog.data.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +2more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). GIBS Tiled Web Mapping Service (TWMS) [Dataset]. https://catalog.data.gov/dataset/gibs-tiled-web-mapping-service-twms
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The TWMS specification is a custom extension to the OGS WMS standard developed by the NASA Jet Propulsion Laboratory. Similar to the OGC WMTS specification, TWMS introduces a 'tiled' approach to imagery requests so that tiles may be pre-generated and cached for fast response. Unlike WMTS, the TWMS standard retains the usage of requests containing geographic coordinates for imagery. However, it only responds to a limited number of predefined geographic regions, creating a gridded access pattern.

  12. Data from: Does spatial thinking ability relate to performance when using...

    • figshare.com
    7z
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eleni Tomai; Margarita Kokla; Christos Charcharos (2023). Does spatial thinking ability relate to performance when using web-mapping services? A survey with digital natives [Dataset]. http://doi.org/10.6084/m9.figshare.22132940.v2
    Explore at:
    7zAvailable download formats
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Eleni Tomai; Margarita Kokla; Christos Charcharos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    dataset.7z contains all csv files that comprise the sellected survey data and are used in the analysis. web_mapping_apps questionnaire.pdf includes the tasks that participants had to perform using Google Maps and Bing Maps or HERE WeGo survey_2021.R constitutes the R script of the statistical analysis. It genertate figures and contents of the tables of the paper.

  13. d

    This is a test resource for web mapping services using data from Oregon

    • search.dataone.org
    • beta.hydroshare.org
    • +1more
    Updated Mar 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Anderson (2024). This is a test resource for web mapping services using data from Oregon [Dataset]. https://search.dataone.org/view/sha256%3A8c7487902fcbeb4c05198fd8523b63388915e928abffd2db13487b0a31dfa03e
    Explore at:
    Dataset updated
    Mar 23, 2024
    Dataset provided by
    Hydroshare
    Authors
    Jacob Anderson
    Area covered
    Description

    Testing the functionality of web mapping services. We are adding a shapefile to visualize them and interact with them. This resource contains an Oregon counties shapefile, and Oregon gage station locations shapefile, and a geotiff of statewide imagery.

  14. D

    Seattle Parks and Recreation GIS Map Layer Web Services URL - Ash Can

    • data.seattle.gov
    • cos-data.seattle.gov
    • +2more
    application/rdfxml +5
    Updated Apr 5, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seattle Parks and Recreation (2016). Seattle Parks and Recreation GIS Map Layer Web Services URL - Ash Can [Dataset]. https://data.seattle.gov/dataset/Seattle-Parks-and-Recreation-GIS-Map-Layer-Web-Ser/rg6v-fp57
    Explore at:
    csv, xml, tsv, application/rdfxml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Apr 5, 2016
    Dataset authored and provided by
    Seattle Parks and Recreation
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Ash Can dataset.

  15. Geospatial Services, Solutions (Expertise resources 800+ GIS Engineers)

    • datarade.ai
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMyIndia (2021). Geospatial Services, Solutions (Expertise resources 800+ GIS Engineers) [Dataset]. https://datarade.ai/data-products/geospatial-services-solutions-expertise-resources-800-gis-mapmyindia
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    MapmyIndiahttps://www.mapmyindia.com/
    Authors
    MapMyIndia
    Area covered
    Ascension and Tristan da Cunha, Nigeria, Congo, Comoros, United States of America, Burkina Faso, Estonia, United Republic of, South Sudan, Niger
    Description

    800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:

    Analytics (AI) Change detection Feature extraction Road assets inventory Utility assets inventory Map data production Geodatabase generation Map data Processing /Classifications
    Contour Map Generation Analytics (AI) Change Detection Feature Extraction Imagery Data Processing Ortho mosaic Ortho rectification Digital Ortho Mapping Ortho photo Generation Analytics (Geo AI) Change Detection Map Production Web application development Software testing Data migration Platform development

    AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing

    Our Value Differentiator

    Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”

    Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture

    Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects

    Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables

  16. eAtlas Web Mapping Service (WMS) (AIMS)

    • data.gov.au
    • data.wu.ac.at
    wms
    Updated Jun 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (2017). eAtlas Web Mapping Service (WMS) (AIMS) [Dataset]. https://data.gov.au/data/dataset/eatlas-web-mapping-service-wms-aims
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Jun 24, 2017
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Authors
    Australian Institute of Marine Science
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    The eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes the primary WMS.

    This service delivers map layers associated with the eAtlas project (http://eatlas.org.au), which contains map layers of environmental research focusing on the Great Barrier Reef and its neighbouring coast, the Wet Tropics rainforests and Torres Strait. It also includes lots of reference datasets that provide context for the research data. These reference datasets are sourced mostly from state and federal agencies. In addition to this a number of reference basemaps and associated layers are developed as part of the eAtlas and these are made available through this service.

    This services also delivers map layers associated with the Torres Strait eAtlas.

    This web map service is predominantly set up and maintained for delivery of visualisations through the eAtlas mapping portal (http://maps.eatlas.org.au) and the Australian Ocean Data Network (AODN) portal (http://portal.aodn.org.au). Other portals are free to use this service with attribution, provided you inform us with an email so we can let you know of any changes to the service.

    This WMS is implemented using GeoServer version 2.3 software hosted on a server at the Australian Institute of Marine Science. Associated with each WMS layer is a corresponding cached tiled service which is much faster then the WMS. Please use the cached version when possible.

    The layers that are available can be discovered by inspecting the GetCapabilities document generated by the GeoServer. This XML document lists all the layers, their descriptions and available rendering styles. Most WMS clients should be able to read this document allowing easy access to all the layers from this service.

    For ArcMap use the following steps to add this service: 1. "Add Data" then choose GIS Servers from the "Look in" drop down. 2. Click "Add WMS Server" then set the URL to "http://maps.eatlas.org.au/maps/wms?"

    Note: this service has over 1000 layers and so retrieving the capabilities documents can take a while.

    This services is operated by the Australian Institute of Marine Science and co-funded by the National Environmental Research Program Tropical Ecosystems hub.

  17. d

    California State Waters Map Series--Offshore of Ventura Web Services

    • catalog.data.gov
    • search.dataone.org
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Ventura Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-ventura-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Ventura, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.

  18. a

    GLOBE Tree Heights Web Map Service pts

    • globe-data-igestrategies.hub.arcgis.com
    • geospatial.strategies.org
    Updated Nov 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Global Environmental Strategies (2020). GLOBE Tree Heights Web Map Service pts [Dataset]. https://globe-data-igestrategies.hub.arcgis.com/maps/a7e32e42fa874078b0580b9e27274659
    Explore at:
    Dataset updated
    Nov 6, 2020
    Dataset authored and provided by
    Institute for Global Environmental Strategies
    Area covered
    Earth
    Description

    GLOBE provides the ability to view and interact with data measured across the world. Select the visualization tool to map, graph, filter and export data that have been measured across GLOBE protocols since 1995. Currently the GLOBE Data Visualization Tool supports a subset of protocols. Additional Features and capabilities are continually being added.

  19. NOAA ENC Online Map Service

    • gisnation-sdi.hub.arcgis.com
    • v2-api-demo-dcdev.opendata.arcgis.com
    • +4more
    Updated Apr 4, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2014). NOAA ENC Online Map Service [Dataset]. https://gisnation-sdi.hub.arcgis.com/maps/5cbd464c75a3444592f1dbd28d04af98
    Explore at:
    Dataset updated
    Apr 4, 2014
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    The NOAA ENC Online map service provides a continuous depiction of all NOAA ENC® coverage over U.S. coastal waters and the Great Lakes as would be shown on Electronic Chart Display and Information Systems (ECDIS). U.S. Chart No. 1 provides information about the symbology used in ECDIS. This service provides features that can be leveraged in various GIS and OGC WMS compliant applications. Generic featuresDisplays the S-57 datasets using S-52 presentation library specification edition 3.4.Provides indexing for the S-57 attribute Object Name (OBJNAM)Provides access to S-57 attribute informationLinks external files to S-57 attributesAllows for the best scale data to be displayed similar to how an ECDIS displays best scale data based on the map scale as a user zooms in and out of the display.For more information about Esri technology, email maritime@esri.com.

  20. a

    Self Service Web Map

    • hub.arcgis.com
    • data-monmouthnj.hub.arcgis.com
    • +1more
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monmouth County NJ GIS (2023). Self Service Web Map [Dataset]. https://hub.arcgis.com/maps/d01df08033bc468080dca99648a788ae
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    Monmouth County NJ GIS
    Area covered
    Description

    Self Service Web Map used in Self Service Mapping Application to make maps with Open Data layers.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Regional Municipality of York (2018). Base Mapping Web Mapping Services [Dataset]. https://communautaire-esrica-apps.hub.arcgis.com/maps/b23fc2a155af4253be5beaf85927a993

Base Mapping Web Mapping Services

Explore at:
Dataset updated
Jul 26, 2018
Dataset authored and provided by
The Regional Municipality of York
Area covered
Description

This web map service (WMS) contains a collection of data layers that make up base mapping for York Region. Layers included are waterbodies and rivers, roads, municipal boundaries, elevation, forestry, current imagery and historical imagery. Check out our complete guide to using all of our public Base Mapping Web Mapping Services!

Search
Clear search
Close search
Google apps
Main menu