Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis site is part of pilot effort at the US Department of Energy (DOE) - Office of NEPA Policy and Compliance to evaluate providing IT web services as a shared service, hosted on the cloud, and using only Free and Open Source Software (FOSS). The site is an integrated component of the larger NEPAnode project but is a stand alone service. The site allows users to upload static map images with no geographic data so that they can be accurately referenced/rectified on an webmap. This site allows for the revitalizing of otherwise unusable/archived maps such as historic maps, site surveys, site plans, etc. turning them into usable geographic data which is subsequently made available as a KML file for use in Google Earth/Maps and as a Web Mapping Service (WMS) for using in web-based webmapping application such as NEPAnode or in desktop GIS software.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points).
All of the Digital City Map (DCM) datasets are featured on the Streets App
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterThese Soil Mapping Data Packages include 1. a Soil Map dataset which includes the equivalents to Soil Project Boundaries, Soil Survey Spatial View mapping polygons with attributes from the Soil Name and Layer Files, plus + A Soil Site dataset which includes soil pit site information and detailed soil pit descriptions and any associated lab analyses, and + The Soil Data Dictionary which documents the fields and allowable codes within the data. The Soil Map geodatabase contains the 'best available' data ranging from 1:20,000 scale to 1:250,000 scale with overlapping data removed. The choice of the datasets that remain is based on connectivity to the soil attributes (soil name and layer files), map scale and survey date. (Note: the BC Soil Landscapes of Canada (BCSLC) 1:1,000,000 data has not been included in the Soil_Map or SIFT, but is available from: CANSIS. (A complete soils data package with overlapping soil survey mapping and BCSLC is available on request. Note that the soil survey data with attributes can also be viewed interactively in the [Soil Information Finder Tool](The Soil Map dataset is also available for interactive map viewing or as KMZs from the Soil Information Finder Tool website.
Facebook
TwitterThe 3A54 product, 'Site Rainfall Map', is a map of monthly surface rain totals derived from the instantaneous rain rate maps (2A53). The map is in Cartesian coordinates with a 2 km horizontal resolution and covers an area of 300km x 300km at single radar sites while the covered area varies for multiple radar sites - 724 km x 568 km at Texas site and 512 km x 704 km at Florida site. This monthly rainfall map is not a simple accumulation of the instantaneous maps as gaps in the data must be factored into the calculation. A key component of the TRMM project is the Ground Validation (GV) effort which consists of collecting data from ground-based radar, rain gauges and disdrometers. The data is quality-controlled, and then validation products are produced for comparison with TRMM satellite products. The four primary GV sites are: Darwin, Australia; Houston, Texas; Kwajalein, Republic of the Marshall Islands; Melbourne, Florida. A significant effort is also being supported at NASA Wallops Flight Facility (WFF) and vicinity to provide high quality, long-term measurements of rain rates (via a network of rain gauges collocated with National Weather Service gauges), as well as drop size distributions (DSD) using a variety of instruments, including impact-type Joss Waldvogel, laser-optical Parsivel, as well as two-dimensional video disdrometers. DSD measurements are also being collected at Melbourne and Kwajalein using Joss-Waldvogel disdrometers.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Dataset of the IS BK 5 Ground Map for Forestry Site Sensing of NRW 1: 5.000. The data set gives the contents of all digitally processed large-scale ground maps, usually in scale 1: 5,000, again. For this purpose, the individual soil mapping projects (“procedures”) were integrated into a largely break-free overall package. Because the large-scale floor map was not created nationwide, the data set also shows white, uncharted areas. For these areas, medium-scale soil information can be extracted from the BK50 dataset. Each individual area is described upon retrieval of information from a GIS with regard to soil unit, simplified soil type, soil type group of the upper soil, dams, groundwater (former and current stage), soil worthy of protection, rootability, forest location characteristics, need for soil protection limescale, optimum land clearance, erodibility of the upper floor, capillary ascent of groundwater, usable field capacity, field capacity, air capacity, saturated water conductivity, leachability, cation exchange capacity and further evaluations.
Facebook
TwitterThe Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (avon_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (avon_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (avon_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (avon_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (avon_geomorphology_metadata.txt or avon_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the seismic site-response zonation map for the Netherlands. The site-response (amplification) zonation map for the Netherlands is designed by transforming geological 3D grid cell models into five classes and an amplification factor (AF) is assigned to most of the classes. This site-response assessment, presented on a nationwide scale is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities. The site-response zonation map enables a prediction of site-response after a local earthquake as recommended in the following. It is very important to note that lithological information from geological voxel models is based on spatial interpolation and aimed at interpretations on regional scale. As a consequence, the presented site-response zonation map is also designed for regional interpretation, and not on individual grid cell scale. Furthermore, at locations with large subsurface heterogeneity, the interpretation should be handled with care. Additional local investigations measurements should be performed at sites of interest in order to assess the site-response in detail. For the map presented, the uncertainties to keep in mind are: first, the AF distribution along the classes, and secondly the uncertainty of the geological model used. The AF is designed to be added to an input seismic signal at a reference horizon with a shear-wave velocity of 500 m/s. This AF is class-dependent and covering only frequencies of 1-10 Hz. Furthermore, the AF does not reflect the maximum amplification that might occur within a smaller frequency band. Moreover, in the country's southern regions, a topographic effect may influence the site-response. It is important to mention that for now these areas are aggregated in Class V and require additional detailed site investigations for site-response assessment. The AF and associated uncertainty per class are available from the NetCDF metadata.
Facebook
TwitterThe Digital Geomorphic-GIS Map of the South Core Banks Area, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (scbk_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (scbk_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (scbk_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (scbk_geomorphology_metadata.txt or scbk_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually hig ...
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_surficial_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_surficial_geology_metadata.txt or mima_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.
This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.
The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:
business_id: A unique Google Places identifier for each business, ensuring distinct entries.phone_number: The contact number associated with the business. It provides a direct means of communication.name: The official name of the business as listed on Google Maps.full_address: The complete postal address of the business, including locality and geographic details.latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.longitude: The geographic longitude coordinate of the business location.review_count: The total number of reviews the business has received on Google Maps.rating: The average user rating out of 5 for the business, reflecting customer satisfaction.timezone: The world timezone the business is located in, important for temporal analysis.website: The official website URL of the business, providing further information and contact options.category: The category or type of service the business provides, such as restaurant, museum, etc.claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.plus_code: A sho...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as feature services.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.
To produce a USNVC association-level vegetation map that satisfied the standards of the USGS/NPS Vegetation Mapping Program, the alliance-level vegetation map developed by Agius was edited and refined onscreen in ArcGIS 9.1. The Agius (2003b) vegetation map was not developed following the USGS/NPS Vegetation Mapping Program standards and therefore could not be used as the final vegetation classification map. Polygons that represented vegetation were readily attributed to existing associations in the U.S. National Vegetation Classification. Polygons that represented intensive land uses were attributed with names modified from the Anderson Level II categories.. Because Saugus Iron Works National Historic Park is a small park with only 21 polygons, the mapping did not rely entirely on aerial photograph interpretation, but also incorporated lines sketched onto a hard-copy map on site.
Using ArcGIS 9.1, polygon boundaries were drawn onscreen based on the plot data and additional field observations. Each polygon was attributed with the name of an USNVC association or an Anderson Level II (modified) land use/land cover map class based on plot data, field observations, aerial photography signatures, and topographic maps. The shapefile was projected in Universal Transverse Mercator Zone 19 North, North American Datum 1983, meters, in ArcGIS 9.1.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterThe Zoning Map website is an interactive mapping site that allows users to determine the zoning classification for any area of the City. The percentage of the Zoning map website uptime, the amount of time the site was available, and the target uptime for each week are available by mousing over columns. The target availability for this site is 99.5%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map references the OpenStreetMap tile layer hosted by Esri. This tile layer presents a new vector basemap of OpenStreetMap (OSM) data created and hosted by Esri, now in beta release. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, that was rendered using OSM cartography. The vector tiles are updated every few weeks; refer to the OpenStreetMap tile layer for details on when it was last updated. When fully released, this vector basemap will be freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterData set of the IS BK5 soil map for the agricultural site survey of NRW 1 : 5.000. The data set gives the contents of all digitally prepared large-scale soil maps of agricultural land, usually on a scale of 1: 5,000, again. For this purpose, the individual soil mapping projects ("procedures") were integrated into a largely unbroken overall package. Because the large-scale ground map was not created nationwide, the data set also shows white, uncharted areas. For these areas, soil information on a medium scale can be taken from the data set of the BK50. Soil science information of adjacent forest areas can be taken from the WMS of the BK5 for forestry site exploration. When retrieving the information from a GIS, each individual area is described by an information page with a plain text output with regard to soil unit, simplified soil type, soil type group of the topsoil, waterlogging, groundwater (former and current stage), soils worthy of protection, rooting capacity, leachate rate, optimal levelling, erosion of the topsoil, capillary rise of groundwater, usable field capacity, field capacity, air capacity, saturated water conductivity, infiltration suitability, cation exchange capacity and further evaluations.
Facebook
TwitterThe California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).