Facebook
TwitterA free mapping tool that allows you to create a thematic map of London without any specialist GIS skills or software - all you need is Microsoft Excel. Templates are available for London’s Boroughs and Wards. Full instructions are contained within the spreadsheets. Macros The tool works in any version of Excel. But the user MUST ENABLE MACROS, for the features to work. There a some restrictions on functionality in the ward maps in Excel 2003 and earlier - full instructions are included in the spreadsheet. To check whether the macros are enabled in Excel 2003 click Tools, Macro, Security and change the setting to Medium. Then you have to re-start Excel for the changes to take effect. When Excel starts up a prompt will ask if you want to enable macros - click yes. In Excel 2007 and later, it should be set by default to the correct setting, but if it has been changed, click on the Windows Office button in the top corner, then Excel options (at the bottom), Trust Centre, Trust Centre Settings, and make sure it is set to 'Disable all macros with notification'. Then when you open the spreadsheet, a prompt labelled 'Options' will appear at the top for you to enable macros. To create your own thematic borough maps in Excel using the ward map tool as a starting point, read these instructions. You will need to be a confident Excel user, and have access to your boundaries as a picture file from elsewhere. The mapping tools created here are all fully open access with no passwords. Copyright notice: If you publish these maps, a copyright notice must be included within the report saying: "Contains Ordnance Survey data © Crown copyright and database rights." NOTE: Excel 2003 users must 'ungroup' the map for it to work.
Facebook
Twitter1) Use the search tool to find where you go to school or work2) Measure the distance you travel to school or work
Facebook
TwitterThis MSOA atlas provides a summary of demographic and related data for each Middle Super Output Area in Greater London. The average population of an MSOA in London in 2010 was 8,346, compared with 1,722 for an LSOA and 13,078 for a ward. The profiles are designed to provide an overview of the population in these small areas by combining a range of data on the population, births, deaths, health, housing, crime, commercial property/floorspace, income, poverty, benefits, land use, environment, deprivation, schools, and employment. If you need to find an MSOA and you know the postcode of the area, the ONS NESS search page has a tool for this. The MSOA Atlas is available as an XLS as well as being presented using InstantAtlas mapping software. This is a useful tool for displaying a large amount of data for numerous geographies, in one place (requires HTML 5). NB. It is currently not possible to export the map as a picture due to a software issue with the Google Maps background. We advise you to print screen to copy an image to the clipboard. Tips: Select a new indicator from the Data box on the left. Select the theme, then indicator and then year to show the data. To view data just for one borough*, use the filter tool. The legend settings can be altered by clicking on the pencil icon next to the MSOA tick box within the map legend.
Facebook
Twitter[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
Facebook
Twitter2014 Coastal Land Use Data. Digital survey of aerial imagery and desktop mapping software. Carried out by the University of Leicester. Project details: https://www.nationaltrust.org.uk/documents/mapping-our-shores-fifty-years-of-land-use-change-at-the-coast.pdf In 1965, concerned about the impact of development along the coast, the National Trust launched ‘Enterprise Neptune’ to help raise money to buy and protect the most ‘pristine’ stretches. In order to understand which areas were most at risk from development, University of Reading staff & students were commissioned to carry out a physical coastal land use survey that was lovingly recorded on 350 OS 2.5 miles to 1 inch scale maps (1965 Coastal Land Use dataset).Half a century later, the Neptune Coastline Campaign, has raised £65 million, enabling the National Trust to acquire an additional 550 miles of coastline to a total of 775 miles. To celebrate this milestone the Trust commissioned the University of Leicester to re-survey the land use along the coast with a desktop methodology that focused on change.For more information on the creation of the Land Use datasets see: http://onlinelibrary.wiley.com/doi/10.1111/tran.12128/abstract
Facebook
TwitterHi, I'm Kiaran Ratcliffe a GIS Consultant within the Education Team at Esri UK. Esri is a company that creates and distributes GIS software, and my focus is on helping schools and universities access and use this software effectively. That means helping educators bring GIS into the classroom in ways that are engaging, inclusive, and relevant. We want students to leave school or university not just knowing how to use GIS, but understanding how to apply it to make a difference—socially, environmentally, and across all kinds of industries.It’s a really rewarding role. We get to support both students and teachers, and help them use modern spatial tools to explore the world, solve problems, and tell powerful stories with data.
Facebook
TwitterOur in-house UK based development team can provide configuration and integration of the Geoplan mapping software platform with your existing systems.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance applications,
Facebook
TwitterDo you resonate with the following workflow?You've been making your maps using screengrabs from Google Maps and overlaying your annotations on PowerPoint or other third party software.You don't have control over how your map looks and what context you can show your readers.
Facebook
Twitterhttps://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The size of the Mobile Mapping Market market was valued at USD 31.76 Billion in 2024 and is projected to reach USD 64.66 Billion by 2033, with an expected CAGR of 10.69% during the forecast period. Recent developments include: One of the pioneers in wearable mobile mapping technology, NavVis, revealed the NavVis VLX 3, their newest generation of wearable technology. As the name suggests, this is the third version of their wearable VLX system; the NavVis VLX 2 was released in July of 2021, which is over two years ago. In their news release, NavVis emphasises the NavVis VLX 3's improved accuracy in point clouds by highlighting the two brand-new, 32-layer lidars that have been "meticulously designed and crafted" to minimise noise and drift in point clouds while delivering "high detail at range.", According to the North American Mach9 Software Platform, mobile Lidar will produce 2D and 3D maps 30 times faster than current systems by 2023., Even though this is Mach9's first product launch, the business has already begun laying the groundwork for future expansion by updating its website, adding important engineering and sales professionals, relocating to new headquarters in Pittsburgh's Bloomfield area, and forging ties in Silicon Valley., In order to make search more accessible to more users in more useful ways, Google has unveiled a tonne of new search capabilities for 2022 spanning Google Search, Google Lens, Shopping, and Maps. These enhancements apply to Google Maps, Google Shopping, Google Leons, and Multisearch., A multi-year partnership to supply Velodyne Lidar, Inc.'s lidar sensors to GreenValley International for handheld, mobile, and unmanned aerial vehicle (UAV) 3D mapping solutions, especially in GPS-denied situations, was announced in 2022. GreenValley is already receiving sensors from Velodyne., The acquisition of UK-based GeoSLAM, a leading provider of mobile scanning solutions with exclusive high-productivity simultaneous localization and mapping (SLAM) programmes to create 3D models for use in Digital Twin applications, is expected to close in 2022 and be completed by FARO® Technologies, Inc., a global leader in 4D digital reality solutions., November 2022: Topcon donated to TU Dublin as part of their investment in the future of construction. Students learning experiences will be improved by instruction in the most cutting-edge digital building techniques at Ireland's first technical university., October 2022: Javad GNSS Inc has released numerous cutting-edge GNSS solutions for geospatial applications. The TRIUMPH-1M Plus and T3-NR smart antennas, which employ upgraded Wi-Fi, Bluetooth, UHF, and power management modules and integrate the most recent satellite tracking technology into the geospatial portfolio, are two examples of important items.. Key drivers for this market are: Improvements in GPS, LiDAR, and camera technologies have significantly enhanced the accuracy and efficiency of mobile mapping systems. Potential restraints include: The initial investment required for mobile mapping equipment, including sensors and software, can be a barrier for small and medium-sized businesses.. Notable trends are: Mobile mapping systems are increasingly integrated with cloud platforms and AI technologies to process and analyze large datasets, enabling more intelligent mapping and predictive analytics.
Facebook
Twitterhttps://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Discover Market Research Intellect's UK 3D Map System Market Report, worth USD 1.2 billion in 2024 and projected to hit USD 2.5 billion by 2033, registering a CAGR of 9.6% between 2026 and 2033.Gain in-depth knowledge of emerging trends, growth drivers, and leading companies.
Facebook
TwitterESYS plc and the Department of Geomatic Engineering at University College London (UCL) have been funded by the British National Space Centre (BNSC) to develop a web GIS service to serve geographic data derived from remote sensing datasets. Funding was provided as part of the BNSC International Co-operation Programme 2 (ICP-2).
Particular aims of the project were to:
use Open Geospatial Consortium (OGC, recently renamed from the OpenGIS Consortium) technologies for map and data serving;
serve datasets for Europe and Africa, particularly Landsat TM and Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data;
provide a website giving access to the served data;
provide software scripts, etc., and a document reporting the data processing and software set-up methods developed during the project.
ICEDS was inspired in particular by the Committee on Earth Observing Satellites (CEOS) CEOS Landsat and SRTM Project (CLASP) proposal. An express intention of ICEDS (aim 4 in the list above) was therefore that the solution developed by ESYS and UCL should be redistributable, for example, to other CEOS members. This was taken to mean not only software scripts but also the methods developed by the project team to prepare the data and set up the server. In order to be compatible with aim 4, it was also felt that the use of Open Source, or at least 'free-of-cost' software for the Web GIS serving was an essential component. After an initial survey of the Web GIS packages available at the time , the ICEDS team decided to use the Deegree package, a free software initiative founded by the GIS and Remote Sensing unit of the Department of Geography, University of Bonn , and lat/lon . However the Red Spider web mapping software suite was also provided by IONIC Software - this is a commercial web mapping package but was provided pro bono by IONIC for this project and has been used in parallel to investigate the possibilities and limitations opened up by using a commercial package.
Facebook
TwitterThe LSOA atlas provides a summary of demographic and related data for each Lower Super Output Area in Greater London. The average population of an LSOA in London in 2010 was 1,722 compared with 8,346 for an MSOA and 13,078 for a ward. The profiles are designed to provide an overview of the population in these small areas by combining a range of data on the population, diversity, households, health, housing, crime, benefits, land use, deprivation, schools, and employment. Due to significant population change in some areas, not all 2011 LSOA boundaries are the same as previous LSOA boundaries that had been used from 2001. A lot of data is still only available using the 2001 boundaries therefore two Atlases have been created - one using the current LSOA boundaries (2011) and one using the previous boundaries (2001). If you need to find an LSOA and you know the postcode of the area, the ONS NESS search page has a tool for this. The LSOA Atlas is available as an XLS as well as being presented using InstantAtlas mapping software. This is a useful tool for displaying a large amount of data for numerous geographies, in one place (requires HTML 5). For 2011 Census data used in the 2001 Boundaries Atlas: For simplicity, where two or more areas have been merged, the figures for these areas have been divided by the number of LSOAs that used to make that area up. Therefore, these data are not official ONS statisitcs, but presented here as indicative to display trends. NB. It is currently not possible to export the map as a picture due to a software issue with the Google Maps background. We advise you to print screen to copy an image to the clipboard. IMPORTANT: Due to the large amount of data and areas, the LSOA Atlas may take up to a minute to fully load. Once loaded, the report will work more efficiently by using the filter tool and selecting one borough at a time. Displaying every LSOA in London will slow down the data reload. Tips: Select a new indicator from the Data box on the left. Select the theme, then indicator and then year to show the data. To view data just for one borough, use the filter tool. The legend settings can be altered by clicking on the pencil icon next to the LSOA tick box within the map legend.
Facebook
TwitterLevels of Noise Pollution in Hampshire and the Isle of Wight Integrated Care System (ICS) during Nighttime and 24-Hour Periods Based on Data from Strategic Noise Mapping. An Interactive Map Application Recommended Citation: Tsimpida, D., & Tsakiridi, A. (2025). Levels of noise pollution in Hampshire and the Isle of Wight Integrated Care System (ICS) during nighttime and 24-hour periods based on data from strategic noise mapping: An interactive map application. License: CC BY – This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. Information about Geographic Location of Data Collection: England Related Projects: Tsimpida, D., Environmental Health and Wellbeing Dynamics: Mapping High-Exposure Neighbourhoods and Assessing Transportation Noise Pollution's Impact on Population Health. This project is funded by the Sustainability & Resilience Institute (SRI), University of Southampton. The views expressed are those of the author(s) and not necessarily those of SRI or the University of Southampton. Methodological Information: To quantify noise pollution, we used the new Noise Mapping Geographic Information Systems (GIS) datasets developed by Defra that calculate noise exposure levels and are openly available: Department for Environment, Food & Rural Affairs. Strategic noise mapping (2022) [Internet]. 2024. Available from: https://www.gov.uk/government/publications/strategic-noise-mapping-2022 For our analyses, we used both the day-evening-night level (Lden) and the night level (Lnight). The Lden level is a noise metric used to assess overall annoyance, calculated as the annual average A-weighted sound level over a 24-hour period. This measure includes a 5-decibel (dB(A)) penalty for evening noise (7 pm to 11 pm) and a 10 dB(A) penalty for nighttime noise (11 pm to 7 am). The Lnight is a nighttime noise indicator that reflects the annual average A-weighted sound level during the night period (11 pm to 7 am), representing the total sound energy equivalent to the fluctuating noise levels experienced throughout that period. _ Geospatial Analysis Information: All geospatial models in this study used Lower Super Output Areas (LSOAs) as the unit of analysis. In all analyses, we used the LSOA boundaries published by the Office for National Statistics as of March 21, 2021: Office for National Statistics. Census 2021 geographies [Internet]. 2021. Available from: https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeographies/census2021geographies _ Integrated Care Board Boundaries: Digital vector boundaries for Integrated Care Boards in England were those published by the Office for National Statistics: Integrated Care Boards (April 2023) EN BGC [Internet]. 2023. Available from: https://www.data.gov.uk/dataset/d6bcd7d1-0143-4366-9622-62a99b362a5c/integrated-care-boards-april-2023-en-bgc This version of the dataset, https://doi.org/10.5258/soton/d3377v2, was updated on 2015/02/17. The previous version is available at https://doi.org/10.5258/soton/d3377v1
Facebook
TwitterThis dataset supports the publication: Warren C. Jochem and Andrew J. Tatem. "Tools for mapping multi-scale settlement patterns of building footprints: An introduction to the R package foot." PLOS ONE.
Facebook
TwitterOur European Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and EU scaled POI data featuring over 2.3 million verified locations across the UK. We have been providing this data to companies worldwide for 30 years.
Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyze competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analyzing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfillment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The National Trees Outside Woodland (TOW) V1 map is a vector product funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme produced under Forest Research’s Earth Observation for Trees and Woodlands (EOTW) project.
The TOW map identifies canopy cover over 3m tall and 5m2 area which exists outside the National Forest Inventory (National Forest Inventory - Forest Research). Canopy cover is categorised into the following woodland types - lone trees, groups of trees and small woodlands.
The data set was derived from the Vegetation Object Model (VOM) (Environment Agency, EA), the National Lidar Survey (EA), and Sentinel-2 (European Space Agency) imagery using spatial algorithms. The method is fully automated with no manual manipulation or editing. The map and its production method has been quality assured by DEFRA science assurance protocols and assessed for accuracy using ground truth data.
Because the process classifies objects based on proximity to features within OS mapping, there could be some misclassifications of those objects not included in the OS (specifically: static caravans, shipping containers, large tents, marquees, coastal cliffs and solar farms).
This is a first release of this dataset, the quality of the production methods will be reviewed over the next year, and improvements will be made where possible.
The TOW map is available under open government licence and free to download from the Forestry Commission open data download website (Forestry Commission) and view online on the NCEA ArcGIS Online web portal (Trees Outside Woodland). A full report containing details on methodology, accuracy and user guide is available.
TOW map web portal link : ncea.maps.arcgis.com/apps/instant/sidebar/index.html?appid=cf571f455b444e588aa94bbd22021cd3
FR TOW map web page : https://www.forestresearch.gov.uk/tools-and-resources/fthr/trees-outside-woodland-map/
Facebook
Twitterhttps://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html
This is the result of data collection over the proceedings of the Symposium on Search Based Software Engineering (SSBSE). It contains information about each paper ever published at SSBSE, including citation counts, field of application, and more.The data was used as source for our work "The Symposium on Search-Based Software Engineering: Past, Present and Future", accepted at the Information and Software Technology journal in 2020.
Facebook
TwitterThe Scotland Heat Map is a tool to help plan for the reduction of carbon emissions from heat in buildings. This service allows users to view layers from the map using their GIS software. The Scotland Heat Map is produced by the Scottish Government. The most recent version is the Scotland Heat Map 2022, which was released to local authorities in November 2023. More information can be found in the documentation available on the Scottish Government website: https://www.gov.scot/publications/scotland-heat-map-documents/
Facebook
TwitterA free mapping tool that allows you to create a thematic map of London without any specialist GIS skills or software - all you need is Microsoft Excel. Templates are available for London’s Boroughs and Wards. Full instructions are contained within the spreadsheets. Macros The tool works in any version of Excel. But the user MUST ENABLE MACROS, for the features to work. There a some restrictions on functionality in the ward maps in Excel 2003 and earlier - full instructions are included in the spreadsheet. To check whether the macros are enabled in Excel 2003 click Tools, Macro, Security and change the setting to Medium. Then you have to re-start Excel for the changes to take effect. When Excel starts up a prompt will ask if you want to enable macros - click yes. In Excel 2007 and later, it should be set by default to the correct setting, but if it has been changed, click on the Windows Office button in the top corner, then Excel options (at the bottom), Trust Centre, Trust Centre Settings, and make sure it is set to 'Disable all macros with notification'. Then when you open the spreadsheet, a prompt labelled 'Options' will appear at the top for you to enable macros. To create your own thematic borough maps in Excel using the ward map tool as a starting point, read these instructions. You will need to be a confident Excel user, and have access to your boundaries as a picture file from elsewhere. The mapping tools created here are all fully open access with no passwords. Copyright notice: If you publish these maps, a copyright notice must be included within the report saying: "Contains Ordnance Survey data © Crown copyright and database rights." NOTE: Excel 2003 users must 'ungroup' the map for it to work.