https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global cloud-based mapping service market size was valued at approximately USD 3.5 billion in 2023 and is projected to reach around USD 8.9 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 11.2% during the forecast period. This remarkable growth is primarily driven by the increasing demand for real-time data access and navigation services across various sectors. Businesses and governments worldwide are increasingly leveraging cloud-based mapping services to optimize operations, improve customer experience, and enhance decision-making processes. The seamless integration of advanced technologies such as Artificial Intelligence (AI) and Internet of Things (IoT) in mapping services is further boosting this market's expansion.
The integration of AI with cloud-based mapping services is one of the key growth factors for this market. AI technologies enhance the capabilities of cloud-based mapping services by providing intelligent insights and predictive analytics. For instance, AI can analyze traffic patterns and predict congestion, offering alternative routes and optimal travel paths. This is particularly beneficial for the transportation and logistics sectors, where time is of the essence. Furthermore, AI-driven mapping services can assist businesses in understanding consumer behavior and preferences, allowing for targeted marketing strategies and improved customer engagement. The ability of AI to process massive datasets quickly and accurately makes it a valuable tool in the cloud-based mapping service industry.
Another significant factor contributing to market growth is the rising adoption of IoT devices. IoT devices generate a vast amount of location-based data that can be effectively managed and utilized through cloud-based mapping services. These services enable businesses to track and monitor assets, vehicles, and personnel in real-time, leading to improved operational efficiency and reduced costs. For example, in the logistics sector, companies can use cloud-based mapping services to optimize delivery routes and monitor vehicle conditions, thereby minimizing fuel consumption and enhancing customer satisfaction. The continuous evolution and proliferation of IoT devices are expected to drive further demand for cloud-based mapping services in the coming years.
The increasing reliance on mobile devices and the proliferation of high-speed internet connectivity are also significant growth drivers for the cloud-based mapping service market. With the widespread use of smartphones and tablets, consumers and businesses alike are accessing mapping services on-the-go, necessitating reliable cloud-based solutions. The availability of high-speed internet ensures seamless connectivity and real-time updates, enhancing user experience. This trend is particularly prominent in urban areas, where demand for navigation and location-based services is high. As mobile technology continues to evolve and internet infrastructure improves worldwide, the cloud-based mapping service market is poised for substantial growth.
The rise of URL Shortening Services has become increasingly relevant in the context of cloud-based mapping services. These services allow users to condense lengthy URLs into shorter, more manageable links, which is particularly useful for sharing location-based information. In industries such as logistics and transportation, where quick access to precise location data is crucial, URL shortening can streamline communication and improve efficiency. By integrating URL shortening with mapping services, businesses can enhance their digital marketing strategies and facilitate easier sharing of maps and navigation routes. This integration not only improves user experience but also supports the growing demand for seamless digital interactions in the mapping service market.
The cloud-based mapping service market is segmented into several service types, each offering unique features and benefits to users. Mapping and navigation services are perhaps the most widely recognized and utilized among these. They provide users with detailed maps, directions, and navigation assistance, which are crucial for both consumers and businesses. These services cater to a wide array of applications, from personal navigation to complex logistics operations. As the demand for precise, real-time navigation grows, mapping and navigation services continue to be at the forefront of the cloud-based mapping industry. Their integrat
The USGS National Hydrography Dataset (NHD) service from The National Map is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000 (or larger) scale and referred to as high resolution NHD, and the other based on 1:100,000 scale and referred to as medium resolution NHD. The NHD from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. The NHD is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map download client allows free downloads of public domain NHD data in either Esri File Geodatabase or Shapefile formats. For additional information on the NHD, go to https://nhd.usgs.gov/index.html.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This article introduces the Mapping Attitudes, Perceptions and Support (MAPS) dataset, which provides rich survey data from more than 12,000 respondents in Colombia. Our panel survey – carried out in two separate waves in 2019 and 2021 – is representative at the level of each ‘Program for Development with a Territorial Focus’ (PDET, for its acronym in Spanish), the most war-affected regions and those targeted for peace agreement implementation. We describe the sample and compare support for the peace agreement in MAPS to other recent surveys in Colombia, showing how MAPS reveals regional variation obscured in nationally representative surveys. Regression analyses illustrate how the panel data allow us to explore how and why people’s perceptions of the agreement shift over time. The MAPS data will enable scholars to gain insights into the microfoundations of peacebuilding over time and across space.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database 2002-2005: Project Size = 1,898 acres Fort Larned National Historic Site (including the Rut Site) = 705 acres 16 Map Classes 11 Vegetated 5 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at FOLS to ¼ acre. Total Size = 229 Polygons Average Polygon Size = 8.3 acres Overall Thematic Accuracy = 92% To produce the digital map, a combination of 1:8,500-scale (0.75 meter pixels) color infrared digital ortho-imagery acquired on October 26, 2005 by the Kansas Applied Remote Sensing Program and 1:12,000-scale true color ortho-rectified imagery acquired in 2005 by the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office, and all of the GPS referenced ground data were used to interpret the complex patterns of vegetation and land-use. In the end, 16 map units (11 vegetated and 5 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed and revised. One hundred and six accuracy assessment (AA) data points were collected in 2006 by KNSHI and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 92%.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global digital map service market size is projected to grow significantly, from approximately $18.9 billion in 2023 to an estimated $53.1 billion by 2032, reflecting a compelling Compound Annual Growth Rate (CAGR) of 12.5%. This robust growth is driven by the increasing adoption of digital mapping technologies across diverse industries and the rising demand for real-time geographic and navigation data in both consumer and enterprise applications.
One of the primary growth factors for the digital map service market is the expanding use of digital maps in the automotive sector, particularly in the development of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles. These technologies rely heavily on precise and up-to-date mapping data for navigation, obstacle detection, and other functionalities, making digital maps indispensable. Additionally, the proliferation of mobile devices and the integration of mapping services in applications such as ride-sharing, logistics, and local search have significantly contributed to market expansion.
Another significant driver is the increasing reliance on Geographic Information Systems (GIS) across various industries. GIS technology enables organizations to analyze spatial information, improve decision-making processes, and enhance operational efficiencies. Industries such as government, defense, agriculture, and urban planning utilize GIS for land use planning, disaster management, and resource allocation, among other applications. The continuous advancements in GIS technology and the integration of artificial intelligence (AI) and machine learning (ML) are expected to further propel market growth.
The rising demand for real-time location data is also a crucial factor fueling the growth of the digital map service market. Real-time location data is essential for applications such as fleet management, asset tracking, and public safety. Businesses leverage this data to optimize routes, monitor assets, and enhance customer service. The increasing implementation of Internet of Things (IoT) devices and the growing importance of location-based services are likely to sustain the demand for real-time mapping solutions in the coming years.
Regionally, North America leads the digital map service market, driven by the high adoption rate of advanced technologies and the presence of major players in the region. However, the Asia Pacific region is expected to witness the fastest growth, attributed to rapid urbanization, increasing smartphone penetration, and government initiatives to develop smart cities. Europe, Latin America, and the Middle East & Africa are also anticipated to experience substantial growth, fueled by the rising demand for digital mapping solutions across various sectors.
In the digital map service market, the service type segment includes mapping and navigation, geographic information systems (GIS), real-time location data, and others. Mapping and navigation services hold a significant share in the market, primarily due to their extensive use in personal and commercial navigation systems. These services provide detailed road maps, traffic updates, and route planning, which are essential for everyday commuting and logistics operations. The continuous advancements in navigation technologies, such as integration with AI and ML for predictive analytics, are expected to enhance the accuracy and functionality of these services.
Geographic Information Systems (GIS) represent another critical segment within the digital map service market. GIS technology is widely used in various applications, including urban planning, environmental management, and disaster response. The ability to analyze and visualize spatial data in multiple layers allows organizations to make informed decisions and optimize resource allocation. The integration of GIS with other emerging technologies, such as drones and remote sensing, is further expanding its application scope and driving market growth.
Real-time location data services are gaining traction due to their importance in applications like fleet management, asset tracking, and location-based services. These services provide up-to-the-minute information on the geographical position of assets, vehicles, or individuals, enabling businesses to improve operational efficiency and customer satisfaction. The growing adoption of IoT devices and the increasing need for real-time visibility in supply chain operations are expected to bolster the demand for real-time location data services.</p&
Story map outlining the GIS and Mappings Resource Support Sector of the GIS and Mapping Division, Government of Newfoundland and Labrador.
The TWMS specification is a custom extension to the OGS WMS standard developed by the NASA Jet Propulsion Laboratory. Similar to the OGC WMTS specification, TWMS introduces a 'tiled' approach to imagery requests so that tiles may be pre-generated and cached for fast response. Unlike WMTS, the TWMS standard retains the usage of requests containing geographic coordinates for imagery. However, it only responds to a limited number of predefined geographic regions, creating a gridded access pattern.
Web map for basic, public-use mapping app.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
Map Direct focus for viewing Property Appraiser Support data. Originally created on 08/26/2014, and moved to Map Direct Lite on 11/01/2014."", "to5":" Please contact GIS.Librarian@floridadep.gov for more information.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The cloud-based mapping service market is experiencing robust growth, driven by the increasing adoption of location-based services across various sectors. The convergence of advanced technologies like AI, IoT, and big data analytics is fueling demand for sophisticated mapping solutions capable of handling vast datasets and delivering real-time insights. Key application areas, such as connected ADAS (Advanced Driver-Assistance Systems) and highly automated driving, are significant contributors to market expansion, demanding high-precision, dynamic mapping capabilities. The shift towards cloud-based infrastructure offers scalability, cost-effectiveness, and accessibility advantages over traditional on-premise solutions, further accelerating market penetration. Different map types, including analytical, animated, collaborative, and online atlases, cater to diverse needs, creating a multifaceted market landscape. While data security and privacy concerns represent potential restraints, the market is poised for sustained growth due to continuous technological advancements and expanding application domains. We estimate the 2025 market size to be approximately $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is underpinned by continuous innovation in mapping technologies and the expanding adoption of location intelligence across various industries. The major players in this market, including ESRI, Pitney Bowes, and CARTO, are investing heavily in R&D to enhance their offerings and gain a competitive edge. Regional variations exist, with North America and Europe currently holding significant market share, primarily due to higher technological adoption rates and established infrastructure. However, Asia Pacific is anticipated to witness rapid growth in the coming years, driven by increasing urbanization and expanding digital economies. The competitive landscape is characterized by both established players and emerging innovative companies striving for market dominance. This competitive dynamic is driving innovation and pushing the boundaries of what's possible with cloud-based mapping services, further contributing to the market's overall growth trajectory.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This web map contains the same layers as the 'Imagery with Labels' basemap that is available in the basemap gallery in the ArcGIS applications but also adds the World Transportation map serviceThe World Transportation map service shows streets, roads and highways and their names. When you zoom in to the highest level of detail the lines disappear and you just see the street names and road numbers.The 'Imagery with Labels' basemap contains the World Imagery map service and the World Boundaries and Places map service, so when you use that basemap you get boundaries and places, but you don't get streets and roads at small scales or street and road labels at large scale. So by adding the World Transportation map service into your map as well you get those too.Want to use this map as the basemap for your own web map? If you have not created your web map yet, simply open this map and then do Save As to save a copy of it as your own map, and then make changes to it like zooming in and adding more data. If you have already created your web map, open it and choose the Imagery With Labels basemap from the Basemap dropdown. Then add the World Transportation service into your map by searching for it. This 'Imagery with Labels and Transportation' web map shows you what this looks like. The World Transportation map service is designed to be drawn underneath the World Boundaries and Places map service, as you can see in this web map.In this web map, we have set the Transportation layer with partial transparency to make the transportation network less prominent relative to the imagery. You can manipulate the level of transparency that you use for the basemap and reference layers in the web maps that you create. You can do this in the layer properties of the layers in the map table of contents.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.Tip: This web map is a useful general purpose map that you can link to from web pages, emails, social media, etc, and embed in your own web page. Just open the map and then choose the Share option. Like with any public map in ArcGIS Online, you don't need to have an ArcGIS Online account in order to share this map by linking or embedding. In addition, by adding extent parameters in the URL you use to link or embed the map, you can take users directly to particular locations. So anyone can immediately take advantage of this map on the web to show any location in the world without even being signed in to ArcGIS Online. See this help topic for more information. For example, here are some links that use extent parameters to open this map at some famous locations. Some of these specify a rectangular extent on the map to zoom to. Others specify a center point and a zoom level to zoom to:Grand Canyon, Arizona, USAGolden Gate, California, USATaj Mahal, Agra, IndiaVatican CityBronze age white horse, Uffington, UKUluru (Ayres Rock), AustraliaMachu Picchu, Cusco, PeruOkavango Delta, Botswana
A raster dataset showing areas’ contribution to the woodland network, including how important the area is for the network (based on habitat type and proximity to the next core area).
This dataset is part of a dataset series that establishes an ecosystem service maps (national scale) for a set of services prioritised through stakeholder consultation and any intermediate layers created by Environment Systems Ltd in the cause of the project. The individual dataset resources in the datasets series are to be considered in conjunction with the project report: https://www.npws.ie/research-projects/ecosystems-services-mapping-and-assessment
The project provides a National Ecosystem and Ecosystem Services (ES) map for a suite of prioritised services to assist implementation of MAES (Mapping and Assessment of Ecosystems and their services) in Ireland.
This involves stakeholder consultation for identification of services to be mapped, the development of a list of indicators and proxies for mapping, as well as an assessment of limitations to ES mapping on differing scales (Local, Catchment, Region, National, EU) based on data availability. Reporting on data gaps forms part of the project outputs.
The project relied on the usage of pre-existing data, which was also utilised to create intermediate data layers to aid in ES mapping. For a full list of the data used throughout the project workings, please refer to the project report.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
The eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes the legacy WMS.
This service delivers map layers associated with the eAtlas project (http://eatlas.org.au), which contains map layers of environmental research focusing on the Great Barrier Reef. The majority of the layers corresponding to Glenn De'ath's interpolated maps of the GBR developed under the MTSRF program (2008-2010).
This web map service is predominantly maintained for the legacy eAtlas map viewer (http://maps.eatlas.org.au/geoserver/www/map.html). All the these legacy map layers are available through the new eAtlas mapping portal (http://maps.eatlas.org.au), however the legends have not been ported across.
This WMS is implemented using GeoServer version 1.7 software hosted on a server at the Australian Institute of Marine Science.
For ArcMap use the following steps to add this service: 1. "Add Data" then choose GIS Servers from the "Look in" drop down. 2. Click "Add WMS Server" then set the URL to "http://maps.eatlas.org.au/geoserver/wms?"
Note: this service has around 460 layers of which approximately half the layers correspond to Standard Error maps, which are WRONG (please ignore all *Std_Error layers.
This services is operated by the Australian Institute of Marine Science and co-funded by the MTSRF program.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset details the potential locations for future beneficial use of dredged material within the South marine plan area. Records have been digitised for specific stretches of coast in the South marine plan area from analysis of the SMPs, SSSI condition lists and CCO coastal squeeze analysis. Data outputs from the MMO 1073 project. The aim of this project is to develop data and maps to describe existing sites of coastal works (replenishment, defence, creation), and future sites of requirement and opportunity in the South marine plan areas. The evidence gathered will assist with developing text or a policy and supporting map for the South marine plans that promotes holistic, integrated and sustainable management of the marine area.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset details the potential locations for future beneficial use of dredged material within the South marine plan area. Records have been digitised for specific stretches of coast in the South marine plan area from analysis of the SMPs, SSSI condition lists and CCO coastal squeeze analysis. Data outputs from the MMO 1073 project. The aim of this project is to develop data and maps to describe existing sites of coastal works (replenishment, defence, creation), and future sites of requirement and opportunity in the South marine plan areas. The evidence gathered will assist with developing text or a policy and supporting map for the South marine plans that promotes holistic, integrated and sustainable management of the marine area.
This dataset contains a raster dataset showing areas’ contributing to the grassland network, including how important the area is for the network (based on habitat type and proximity to the next core area).
This dataset is part of a dataset series that establishes an ecosystem service maps (national scale) for a set of services prioritised through stakeholder consultation and any intermediate layers created by Environment Systems Ltd in the cause of the project. The individual dataset resources in the datasets series are to be considered in conjunction with the project report: https://www.npws.ie/research-projects/ecosystems-services-mapping-and-assessment
The project provides a National Ecosystem and Ecosystem Services (ES) map for a suite of prioritised services to assist implementation of MAES (Mapping and Assessment of Ecosystems and their services) in Ireland.
This involves stakeholder consultation for identification of services to be mapped, the development of a list of indicators and proxies for mapping, as well as an assessment of limitations to ES mapping on differing scales (Local, Catchment, Region, National, EU) based on data availability. Reporting on data gaps forms part of the project outputs.
The project relied on the usage of pre-existing data, which was also utilised to create intermediate data layers to aid in ES mapping. For a full list of the data used throughout the project workings, please refer to the project report.
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global cloud-based mapping service market size was valued at approximately USD 3.5 billion in 2023 and is projected to reach around USD 8.9 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 11.2% during the forecast period. This remarkable growth is primarily driven by the increasing demand for real-time data access and navigation services across various sectors. Businesses and governments worldwide are increasingly leveraging cloud-based mapping services to optimize operations, improve customer experience, and enhance decision-making processes. The seamless integration of advanced technologies such as Artificial Intelligence (AI) and Internet of Things (IoT) in mapping services is further boosting this market's expansion.
The integration of AI with cloud-based mapping services is one of the key growth factors for this market. AI technologies enhance the capabilities of cloud-based mapping services by providing intelligent insights and predictive analytics. For instance, AI can analyze traffic patterns and predict congestion, offering alternative routes and optimal travel paths. This is particularly beneficial for the transportation and logistics sectors, where time is of the essence. Furthermore, AI-driven mapping services can assist businesses in understanding consumer behavior and preferences, allowing for targeted marketing strategies and improved customer engagement. The ability of AI to process massive datasets quickly and accurately makes it a valuable tool in the cloud-based mapping service industry.
Another significant factor contributing to market growth is the rising adoption of IoT devices. IoT devices generate a vast amount of location-based data that can be effectively managed and utilized through cloud-based mapping services. These services enable businesses to track and monitor assets, vehicles, and personnel in real-time, leading to improved operational efficiency and reduced costs. For example, in the logistics sector, companies can use cloud-based mapping services to optimize delivery routes and monitor vehicle conditions, thereby minimizing fuel consumption and enhancing customer satisfaction. The continuous evolution and proliferation of IoT devices are expected to drive further demand for cloud-based mapping services in the coming years.
The increasing reliance on mobile devices and the proliferation of high-speed internet connectivity are also significant growth drivers for the cloud-based mapping service market. With the widespread use of smartphones and tablets, consumers and businesses alike are accessing mapping services on-the-go, necessitating reliable cloud-based solutions. The availability of high-speed internet ensures seamless connectivity and real-time updates, enhancing user experience. This trend is particularly prominent in urban areas, where demand for navigation and location-based services is high. As mobile technology continues to evolve and internet infrastructure improves worldwide, the cloud-based mapping service market is poised for substantial growth.
The rise of URL Shortening Services has become increasingly relevant in the context of cloud-based mapping services. These services allow users to condense lengthy URLs into shorter, more manageable links, which is particularly useful for sharing location-based information. In industries such as logistics and transportation, where quick access to precise location data is crucial, URL shortening can streamline communication and improve efficiency. By integrating URL shortening with mapping services, businesses can enhance their digital marketing strategies and facilitate easier sharing of maps and navigation routes. This integration not only improves user experience but also supports the growing demand for seamless digital interactions in the mapping service market.
The cloud-based mapping service market is segmented into several service types, each offering unique features and benefits to users. Mapping and navigation services are perhaps the most widely recognized and utilized among these. They provide users with detailed maps, directions, and navigation assistance, which are crucial for both consumers and businesses. These services cater to a wide array of applications, from personal navigation to complex logistics operations. As the demand for precise, real-time navigation grows, mapping and navigation services continue to be at the forefront of the cloud-based mapping industry. Their integrat