This mapping tool provides a representation of the general watershed boundaries for stream systems declared fully appropriated by the State Water Board. The boundaries were created by Division of Water Rights staff by delineating FASS critical reaches and consolidating HUC 12 sub-watersheds to form FASS Watershed boundaries. As such, the boundaries are in most cases conservative with respect to the associated stream system. However, users should check neighboring FASS Watersheds to ensure the stream system of interest is not restricted by other FASS listings. For more information regarding the Declaration of Fully Appropriated Stream Systems, visit the Division of Water Rights’ Fully Appropriated Streams webpage. How to Use the Interactive Mapping Tool: If it is your first time viewing the map, you will need to click the “OK” box on the splash screen and agree to the disclaimer before continuing. Navigate to your point of interest by either using the search bar or by zooming in on the map. You may enter a stream name, street address, or watershed ID in the search bar. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. You may toggle the FAS Streams reference layer on and off to find representative critical reaches associated with the FASS Watershed layer. Please note that this layer is for general reference purposes only and ultimately the critical reach listed in Appendix A of Water Rights Order 98-08 and Appendix A together with any associated footnotes controls. Note: A separate FAS Watershed boundary layer was created for the Bay-Delta Watershed. The Bay-Delta Watershed layer should be toggled on to check if the area of interest is fully appropriated under State Water Board Decision 1594.
The Digital Geohazards-GIS Map of Biscayne National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bisc_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bisc_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bisc_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (bisc_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bisc_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bisc_geohazard_metadata_faq.pdf). Please read the bisc_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bisc_geohazard_metadata.txt or bisc_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The market for GIS Mapping Tools is projected to reach a value of $XX million by 2033, growing at a CAGR of XX% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of GIS mapping tools by various industries, including government, utilities, and telecom, for a wide range of applications such as geological exploration, water conservancy projects, and urban planning. The convergence of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) is further driving market growth, as these technologies enable GIS mapping tools to provide more accurate and real-time data analysis. The market is segmented by type (cloud-based, web-based), application (geological exploration, water conservancy projects, urban planning, others), and region (North America, Europe, Asia Pacific, Middle East & Africa). North America is expected to remain the largest market for GIS mapping tools throughout the forecast period, due to the early adoption of these technologies and the presence of leading vendors such as Esri, MapInfo, and Autodesk. Asia Pacific is expected to experience the highest growth rate during the forecast period, due to the increasing adoption of GIS mapping tools in emerging economies such as China and India. Key industry players include Golden Software Surfer, Geoway, QGIS, GRASS GIS, Google Earth Pro, CARTO, Maptive, Shenzhen Edraw Software, MapGIS, Oasis montaj, DIVA-GIS, Esri, MapInfo, Autodesk, BatchGeo, Cadcorp, Hexagon, Mapbox, Trimble, and ArcGIS.
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
On shallow rocky reefs in northeastern Aotearoa, New Zealand, urchin barrens are recognised as indicators of the ecosystem effects of overfishing reef predators. Yet, information on their extent and variability is lacking. We use aerial imagery to map the urchin barrens and kelp forests on reefs (<30 m depth) across seven locations, including within two long-established marine reserves and a marine protected area that allows recreational fishing. Urchin barrens were present in all locations and were restricted to reefs <10-16 m deep. This archive contains ArcGIS shapefiles and layer files for all of the maps used in this study. The study area extends from Cape Reinga in the far north of the North Island to Tawharanui in the Hauraki Gulf near Auckland. Regional scale base maps of the prominent marine habitats were included along with the seven fine-scale maps where the kelp forests and urchin barrens were mapped., The GIS shapefiles produced in this study were hand-drawn over layers of low-level aerial photography taken in specific conditions, which maximised the visible depth observable to create polygons to depict the habitat boundaries of the shallow reef. Of particular interest was the mapping of urchin barrens. Ground truthing surveys creating point data and underwater imagery were also brought into the GIS project to assist in drawing the reef habitat polygons. Arc layer files contain a common symbology across the seven study maps to aid the interpretation of the mapping. Further information on the methodology used in the mapping can be found in two published papers and four technical reports corresponding to the maps. The Readme file details where technical reports and published reports can be downloaded from the internet., , # GIS data of urchin barren mapping in Northeastern New Zealand
GIS mapping resources supporting the research article: Kerr, V.C. Grace R.V. (deceased), and Shears N.T., 2004. Estimating the extent of urchin barrens and kelp forest loss in northeastern Aotearoa, New Zealand. Kerr and Associates, Whangarei, New Zealand.
Four folders in this archive contain ArcGIS shapefiles with the extension (.shp). The shapefiles can be uploaded to ArcGIS or any ArcGIS-compatible software to view and access the files' spatial data and habitat attributes. It is essential to retain the associated files in each folder as these are system files required by ArcGIS to open and use the shapefiles. Each shapefile has six associated files with extensions: .avi, .CPG, .dbf, .prf, .sbn, and .sbx. In this archive are maps based on polygons drawn to depict habitat boundaries of biological and physical habitats in the shallow coastal areas of Northeastern New Zealan...
Unlock precise, high-quality GIS data covering 4.5M+ verified locations across Italy. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
Alquist-Priolo Earthquake Fault Zoning Act (1972) and the Seismic Hazards Mapping Act (1990) direct the State Geologist to delineate regulatory "Zones of Required Investigation" to reduce the threat to public health and safety and to minimize the loss of life and property posed by earthquake-triggered ground failures. Cities and counties affected by the zones must regulate certain development "projects" within them. These Acts also require sellers of real property (and their agents) within a mapped hazard zone to disclose at the time of sale that the property lies within such a zone.
NOTE: Fault Evaluation Reports are available for those areas covered by a Regulatory Map however there are reports available for areas outside the Regulatory map boundary. For a complete set of maps available for purchase on CD please contact the CGS Library.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).
It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).
• The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)
• A single street closure may span multiple segments of a street.
• The street closure permit refers to all the component line segments.
• A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.
The roadway_id
field is a unique GIS line segment representing the aforementioned
segments of road. The roadway_id
values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id
value may appear in multiple permits.
The field closure_id
represents a unique ID for each closure, and permit_id
uniquely identifies each permit. This is in contrast to the aforementioned roadway_id
field which, again, is a unique ID only for the roadway segments.
City teams that use this data requested that each segment of each street closure permit
be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id
field, most other data from that permit pertains equally to those three rows.
Thus, the values in most fields of the three records are identical.
Each row has the fields segment_num
and total_segments
which detail the relationship
of each record, and its corresponding permit, according to street segment. The above example
produced three records for a single permit. In this case, total_segments
would equal 3 for each record. Each of those records would have a unique value between 1 and 3.
The geometry
field consists of string values of lat/long coordinates, which can be used
to map the street segments.
All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.
These data are used by DOMI to track the status of street closures (and associated permits).
An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits
This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Unlock precise, high-quality GIS data covering 43M+ verified locations across the USA. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global digital map service market size is projected to grow significantly, from approximately $18.9 billion in 2023 to an estimated $53.1 billion by 2032, reflecting a compelling Compound Annual Growth Rate (CAGR) of 12.5%. This robust growth is driven by the increasing adoption of digital mapping technologies across diverse industries and the rising demand for real-time geographic and navigation data in both consumer and enterprise applications.
One of the primary growth factors for the digital map service market is the expanding use of digital maps in the automotive sector, particularly in the development of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles. These technologies rely heavily on precise and up-to-date mapping data for navigation, obstacle detection, and other functionalities, making digital maps indispensable. Additionally, the proliferation of mobile devices and the integration of mapping services in applications such as ride-sharing, logistics, and local search have significantly contributed to market expansion.
Another significant driver is the increasing reliance on Geographic Information Systems (GIS) across various industries. GIS technology enables organizations to analyze spatial information, improve decision-making processes, and enhance operational efficiencies. Industries such as government, defense, agriculture, and urban planning utilize GIS for land use planning, disaster management, and resource allocation, among other applications. The continuous advancements in GIS technology and the integration of artificial intelligence (AI) and machine learning (ML) are expected to further propel market growth.
The rising demand for real-time location data is also a crucial factor fueling the growth of the digital map service market. Real-time location data is essential for applications such as fleet management, asset tracking, and public safety. Businesses leverage this data to optimize routes, monitor assets, and enhance customer service. The increasing implementation of Internet of Things (IoT) devices and the growing importance of location-based services are likely to sustain the demand for real-time mapping solutions in the coming years.
Regionally, North America leads the digital map service market, driven by the high adoption rate of advanced technologies and the presence of major players in the region. However, the Asia Pacific region is expected to witness the fastest growth, attributed to rapid urbanization, increasing smartphone penetration, and government initiatives to develop smart cities. Europe, Latin America, and the Middle East & Africa are also anticipated to experience substantial growth, fueled by the rising demand for digital mapping solutions across various sectors.
In the digital map service market, the service type segment includes mapping and navigation, geographic information systems (GIS), real-time location data, and others. Mapping and navigation services hold a significant share in the market, primarily due to their extensive use in personal and commercial navigation systems. These services provide detailed road maps, traffic updates, and route planning, which are essential for everyday commuting and logistics operations. The continuous advancements in navigation technologies, such as integration with AI and ML for predictive analytics, are expected to enhance the accuracy and functionality of these services.
Geographic Information Systems (GIS) represent another critical segment within the digital map service market. GIS technology is widely used in various applications, including urban planning, environmental management, and disaster response. The ability to analyze and visualize spatial data in multiple layers allows organizations to make informed decisions and optimize resource allocation. The integration of GIS with other emerging technologies, such as drones and remote sensing, is further expanding its application scope and driving market growth.
Real-time location data services are gaining traction due to their importance in applications like fleet management, asset tracking, and location-based services. These services provide up-to-the-minute information on the geographical position of assets, vehicles, or individuals, enabling businesses to improve operational efficiency and customer satisfaction. The growing adoption of IoT devices and the increasing need for real-time visibility in supply chain operations are expected to bolster the demand for real-time location data services.</p&
The Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.
This mapping tool provides a representation of the general watershed boundaries for stream systems declared fully appropriated by the State Water Board. The boundaries were created by Division of Water Rights staff by delineating FASS critical reaches and consolidating HUC 12 sub-watersheds to form FASS Watershed boundaries. As such, the boundaries are in most cases conservative with respect to the associated stream system. However, users should check neighboring FASS Watersheds to ensure the stream system of interest is not restricted by other FASS listings. For more information regarding the Declaration of Fully Appropriated Stream Systems, visit the Division of Water Rights’ Fully Appropriated Streams webpage. How to Use the Interactive Mapping Tool: If it is your first time viewing the map, you will need to click the “OK” box on the splash screen and agree to the disclaimer before continuing. Navigate to your point of interest by either using the search bar or by zooming in on the map. You may enter a stream name, street address, or watershed ID in the search bar. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. You may toggle the FAS Streams reference layer on and off to find representative critical reaches associated with the FASS Watershed layer. Please note that this layer is for general reference purposes only and ultimately the critical reach listed in Appendix A of Water Rights Order 98-08 and Appendix A together with any associated footnotes controls. Note: A separate FAS Watershed boundary layer was created for the Bay-Delta Watershed. The Bay-Delta Watershed layer should be toggled on to check if the area of interest is fully appropriated under State Water Board Decision 1594.