3 datasets found
  1. Data from: Molecular phylogeny and character-mapping support the synonymy of...

    • gbif.org
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg; Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg (2024). Molecular phylogeny and character-mapping support the synonymy of Cordobia and Gallardoa in Mionandra (Malpighiaceae) [Dataset]. http://doi.org/10.15468/a97bck
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Plazi
    Authors
    Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg; Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains the digitized treatments in Plazi based on the original journal article de Almeida, Rafael F., de Morais, Isa L., Pellegrini, Marco O. O., van den Berg, Cassio (2023): Molecular phylogeny and character-mapping support the synonymy of Cordobia and Gallardoa in Mionandra (Malpighiaceae). Plant Ecology and Evolution 156 (3): 352-364, DOI: http://dx.doi.org/10.5091/plecevo.101657, URL: http://dx.doi.org/10.5091/plecevo.101657

  2. i

    Grant Giving Statistics for Brain Mapping Support Foundation

    • instrumentl.com
    Updated Aug 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Grant Giving Statistics for Brain Mapping Support Foundation [Dataset]. https://www.instrumentl.com/990-report/brain-mapping-support-foundation
    Explore at:
    Dataset updated
    Aug 27, 2021
    Variables measured
    Total Assets, Total Giving, Average Grant Amount
    Description

    Financial overview and grant giving statistics of Brain Mapping Support Foundation

  3. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg; Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg (2024). Molecular phylogeny and character-mapping support the synonymy of Cordobia and Gallardoa in Mionandra (Malpighiaceae) [Dataset]. http://doi.org/10.15468/a97bck
Organization logoOrganization logo

Data from: Molecular phylogeny and character-mapping support the synonymy of Cordobia and Gallardoa in Mionandra (Malpighiaceae)

Related Article
Explore at:
Dataset updated
Nov 27, 2024
Dataset provided by
Global Biodiversity Information Facilityhttps://www.gbif.org/
Plazi
Authors
Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg; Rafael F. de Almeida; Isa L. de Morais; Marco O. O. Pellegrini; Cassio van den Berg
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This dataset contains the digitized treatments in Plazi based on the original journal article de Almeida, Rafael F., de Morais, Isa L., Pellegrini, Marco O. O., van den Berg, Cassio (2023): Molecular phylogeny and character-mapping support the synonymy of Cordobia and Gallardoa in Mionandra (Malpighiaceae). Plant Ecology and Evolution 156 (3): 352-364, DOI: http://dx.doi.org/10.5091/plecevo.101657, URL: http://dx.doi.org/10.5091/plecevo.101657

Search
Clear search
Close search
Google apps
Main menu