The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
DOUGLAS COUNTY SURVEY/GISGIS PARCEL MAPPING GUIDELINES FOR PARCEL DISCREPANCIESIt is the intent of the Douglas County GIS Parcel Mapping to accurately identify the areas of land parcels to be valued and taxed 1. Discrepancies in areas• The Auditor/Assessor (tax) acreage areas started with the original US General Land Office (GLO) township plat maps created from the Public Land Survey (PLS) that was done between 1858 and 1871. The recovery of the PLS corners and the accurate location of these corners with GPS obtained coordinates has allowed for accurate section subdivisions, which results in accurate areas for parcels based on legal descriptions, which may be significantly different than the original areas. (See Example 2)• Any parcel bordering a meandered lake and/or a water boundary will likely have a disparity of area between the Auditor/Assessor acreages and the GIS acreages because of the inaccuracy of the original GLO meander lines from which the original areas were determined. Water lines are not able to be drafted to the same accuracy as the normal parcel lines. The water lines are usually just sketched on a survey and their dimensions are not generally given on a land record. The water boundaries of our GIS parcels are located from aerial photography. This is a subjective determination based on the interpretation by the Survey/GIS technician of what is water. Some lakes fluctuate significantly and the areas of all parcels bordering water are subject to constant change. In these cases the ordinary high water line (OHW) is attempted to be identified. Use of 2-foot contours will be made, if available. (See Example 1)• Some land records do not accurately report the area described in the land description and the description area is ignored. (See Example 3)• The parcel mapping has made every attempt to map the parcels based on available survey information as surveyed and located on the ground. This may conflict with some record legal descriptions.Solutions• If an actual survey by a licensed Land Surveyor is available, it will be utilized for the tax acreage.• If the Auditor/Assessor finds a discrepancy between the tax and GIS areas, they will request a review by the County Survey/GIS department.• As a starting guideline, the County Survey/GIS department will identify all parcels that differ in tax area versus GIS parcel area of 10 % or more and a difference of at least 5 acres. (This could be expanded later after the initial review.)• Each of these identified parcels will be reviewed individually by the County Survey/GIS department to determine the reason for the discrepancy and a recommendation will be made by the County Survey/GIS department to the Auditor/Assessor if the change should be made or not.• If a change is to be made to the tax area, a letter will be sent to the taxpayer informing them that their area will be changed during the next tax cycle, which could affect their property valuation. This letter will originate from the Auditor/Assessor with explanation from the County Survey/GIS department. 2. Gaps and Overlaps• Land descriptions for adjoining parcels sometimes overlap or leave a gap between them.o In these instances the Survey/GIS technician has to make a decision where to place this boundary. A number of circumstances are reviewed to facilitate this decision as these dilemmas are usually decided on a case by case basis. All effort will be made to not leave a gap, but sometimes this is not possible and the gap will be shown with “unknown” ownership. (Note: The County does not have the authority to change boundaries!)o Some of the circumstances reviewed are: Which parcel had the initial legal description? Does the physical occupation of the parcel line as shown on the air photo more closely fit one of the described parcels? Interpretation of the intent of the legal description. Is the legal description surveyable?Note: These overlaps will be shown on the GIS map with a dashed “survey line” and accompanying text for the line not used for the parcel boundary. 3. Parcel lines that do not match location of buildings Structures on parcels do not always lie within the boundaries of the parcel. This may be a circumstance of building without the benefit of a survey or of misinterpreting these boundaries. The parcel lines should be shown accurately as surveyed and/or described regardless of the location of structures on the ground. NOTE: The GIS mapping is not a survey, but is an interpretation of parcel boundaries predicated upon resources available to the County Survey/GIS department.Gary Stevenson Page 1 7/21/2017Example 1Example 2A Example 2B Example 3
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.
One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.
Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.
The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.
In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.
The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.
The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.
Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.
The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec
This mapping tool provides a representation of the general watershed boundaries for stream systems declared fully appropriated by the State Water Board. The boundaries were created by Division of Water Rights staff by delineating FASS critical reaches and consolidating HUC 12 sub-watersheds to form FASS Watershed boundaries. As such, the boundaries are in most cases conservative with respect to the associated stream system. However, users should check neighboring FASS Watersheds to ensure the stream system of interest is not restricted by other FASS listings. For more information regarding the Declaration of Fully Appropriated Stream Systems, visit the Division of Water Rights’ Fully Appropriated Streams webpage. How to Use the Interactive Mapping Tool: If it is your first time viewing the map, you will need to click the “OK” box on the splash screen and agree to the disclaimer before continuing. Navigate to your point of interest by either using the search bar or by zooming in on the map. You may enter a stream name, street address, or watershed ID in the search bar. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. You may toggle the FAS Streams reference layer on and off to find representative critical reaches associated with the FASS Watershed layer. Please note that this layer is for general reference purposes only and ultimately the critical reach listed in Appendix A of Water Rights Order 98-08 and Appendix A together with any associated footnotes controls. Note: A separate FAS Watershed boundary layer was created for the Bay-Delta Watershed. The Bay-Delta Watershed layer should be toggled on to check if the area of interest is fully appropriated under State Water Board Decision 1594.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This map data layer represents the GIS Map Panel Boundaries for the City of Bloomington, Indiana. The GIS Map Panel Boundaries data layer was created as a reference grid for the GIS map data. The grid tiles are 3000' by 2000' and cover a total of 86.3 square miles of central Monroe County in Indiana. The panel tiles are located arbitrary to any geographic features
Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.
Map containing all Porter County GIS feature layers publicly available. Dynamic data sets are updated daily. Individual copies of this data are available in the Porter County GIS Office.
The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Contains:World HillshadeWorld Street Map (with Relief) - Base LayerLarge Scale International Boundaries (v11.3)World Street Map (with Relief) - LabelsDoS Country Labels DoS Country LabelsCountry (admin 0) labels that have been vetted for compliance with foreign policy and legal requirements. These labels are part of the US Federal Government Basemap, which contains the borders and place names that have been vetted for compliance with foreign policy and legal requirements.Source: DoS Country Labels - Overview (arcgis.com)Large Scale International BoundariesVersion 11.3Release Date: December 19, 2023DownloadFor more information on the LSIB click here: https://geodata.state.gov/ A direct link to the data is available here: https://data.geodata.state.gov/LSIB.zipAn ISO-compliant version of the LSIB metadata (in ISO 19139 format) is here: https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/metadata/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2 Direct inquiries to internationalboundaries@state.govOverviewThe Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.3 (published 19 December 2023). The 11.3 release contains updates to boundary lines and data refinements enabling reuse of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.National Geospatial Data AssetThis dataset is a National Geospatial Data Asset managed by the Department of State on behalf of the Federal Geographic Data Committee's International Boundaries Theme.DetailsSources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.Attribute StructureThe dataset uses thefollowing attributes:Attribute NameCC1COUNTRY1CC2COUNTRY2RANKSTATUSLABELNOTES These attributes are logically linked:Linked AttributesCC1COUNTRY1CC2COUNTRY2RANKSTATUS These attributes have external sources:Attribute NameExternal Data SourceCC1GENCCOUNTRY1DoS ListsCC2GENCCOUNTRY2DoS ListsThe eight attributes listed above describe the boundary lines contained within the LSIB dataset in both a human and machine-readable fashion. Other attributes in the release include "FID", "Shape", and "Shape_Leng" are components of the shapefile format and do not form an intrinsic part of the LSIB."CC1" and "CC2" fields are machine readable fields which contain political entity codes. These codes are derived from the Geopolitical Entities, Names, and Codes Standard (GENC) Edition 3 Update 18. The dataset uses the GENC two-character codes. The code ‘Q2’, which is not in GENC, denotes a line in the LSIB representing a boundary associated with an area not contained within the GENC standard.The "COUNTRY1" and "COUNTRY2" fields contain human-readable text corresponding to the name of the political entity. These names are names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the list of Independent States in the World and the list of Dependencies and Areas of Special Sovereignty maintained by the Department of State. To ensure the greatest compatibility, names are presented without diacritics and certain names are rendered using commonly accepted cartographic abbreviations. Names for lines associated with the code ‘Q2’ are descriptive and are not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS are names of independent states. Other names are those associated with dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.The following fields are an intrinsic part of the LSIB dataset and do not rely on external sources:Attribute NameMandatoryContains NullsRANKYesNoSTATUSYesNoLABELNoYesNOTESNoYesNeither the "RANK" nor "STATUS" field contains null values; the "LABEL" and "NOTES" fields do.The "RANK" field is a numeric, machine-readable expression of the "STATUS" field. Collectively, these fields encode the views of the United States Government on the political status of the boundary line.Attribute NameValueRANK123STATUSInternational BoundaryOther Line of International Separation Special Line A value of "1" in the "RANK" field corresponds to an "International Boundary" value in the "STATUS" field. Values of "2" and "3" correspond to "Other Line of International Separation" and "Special Line", respectively.The "LABEL" field contains required text necessarily to describe the line segment. The "LABEL" field is used when the line segment is displayed on maps or other forms of cartographic visualizations. This includes most interactive products. The requirement to incorporate the contents of the "LABEL" field on these products is scale dependent. If a label is legible at the scale of a given static product a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field is not a line labeling field but does contain the preferred description for the three LSIB line types when lines are incorporated into a map legend. Using the "CC1", "CC2", or "RANK" fields for labeling purposes is prohibited.The "NOTES" field contains an explanation of any applicable special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, any limitations regarding the purpose of the lines, or the original source of the line. Use of the "NOTES" field for labeling purposes is prohibited.External Data SourcesGeopolitical Entities, Names, and Codes Registry: https://nsgreg.nga.mil/GENC-overview.jspU.S. Department of State List of Independent States in the World: https://www.state.gov/independent-states-in-the-world/U.S. Department of State List of Dependencies and Areas of Special Sovereignty: https://www.state.gov/dependencies-and-areas-of-special-sovereignty/The source for the U.S.—Canada international boundary (NGDAID97) is the International Boundary Commission: https://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.phpThe source for the “International Boundary between the United States of America and the United States of Mexico” (NGDAID82) is the International Boundary and Water Commission: https://catalog.data.gov/dataset?q=usibwcCartographic UsageCartographic usage of the LSIB requires a visual differentiation between the three categories of boundaries. Specifically, this differentiation must be between:- International Boundaries (Rank 1);- Other Lines of International Separation (Rank 2); and- Special Lines (Rank 3).Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary.Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues.ContactDirect inquiries to internationalboundaries@state.gov.CreditsThe lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre.Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.Changes from Prior ReleaseThe 11.3 release is the third update in the version 11 series.This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Notable changes to lines include:• AFGHANISTAN / IRAN• ALBANIA / GREECE• ALBANIA / KOSOVO• ALBANIA/MONTENEGRO• ALBANIA / NORTH MACEDONIA• ALGERIA / MOROCCO• ARGENTINA / BOLIVIA• ARGENTINA / CHILE• BELARUS / POLAND• BOLIVIA / PARAGUAY• BRAZIL / GUYANA• BRAZIL / VENEZUELA• BRAZIL / French Guiana (FR.)• BRAZIL / SURINAME• CAMBODIA / LAOS• CAMBODIA / VIETNAM• CAMEROON / CHAD• CAMEROON / NIGERIA• CHINA / INDIA• CHINA / NORTH KOREA• CHINA / Aksai Chin• COLOMBIA / VENEZUELA• CONGO, DEM. REP. OF THE / UGANDA• CZECHIA / GERMANY• EGYPT / LIBYA• ESTONIA / RUSSIA• French Guiana (FR.) / SURINAME• GREECE / NORTH MACEDONIA• GUYANA / VENEZUELA• INDIA / Aksai Chin• KAZAKHSTAN / RUSSIA• KOSOVO / MONTENEGRO• KOSOVO / SERBIA• LAOS / VIETNAM• LATVIA / LITHUANIA• MEXICO / UNITED STATES• MONTENEGRO / SERBIA• MOROCCO / SPAIN• POLAND / RUSSIA• ROMANIA / UKRAINEVersions 11.0 and 11.1 were updates to boundary lines. Like this version, they also contained topology fixes, land boundary terminus refinements, and tripoint adjustments. Version 11.2 corrected a few errors in the attribute data and ensured that CC1 and CC2 attributes are in alignment with an updated version of the Geopolitical Entities, Names, and Codes (GENC) Standard, specifically Edition 3 Update 17.LayersLarge_Scale_International_BoundariesTerms of
River Reach Habitat Quality (RFC 2008)
This layer was digitized in 2015 for the HRS Board using data from the 2008 State of the Watershed Report. This layer shows the quality of habitat surveyed by Delia Malone on selected reaches in the Roaring Fork Watershed. This data is intended as a reference for future research and planning, site specific conditions may vary. Strahler Steam Order numbers are also given for each river reach.
River Watch Sites
This layer was digitized in 2015 for the HRS Board using data from the Roaring Fork Conservancy. The layer shows River Watch sites where the RFC and partner organizations monitor stream health indicators. Active sites are marked with an “x” in the popup. To access the data please visit http://cpw.state.co.us/aboutus/Pages/RW-DataSheets.aspx and search for the river and monitoring site of interest. For more information about the program and additional summery data please contact the RFC www.roaringfork.org
Surface Water Realtime (USGS, CDSS)
This layer shows realtime telemetry gauges maintained by the United States Geological Survey and the Colorado Decision Support System. Click on the icon and then click on “more info” to link to the gauge website. This layer can be used to monitor stream flows and diversion tunnel flows (cfs). Please see the USGS and CDSS websites for more information.
Parcel Boundary (Pitkin County GIS 2015)
This layer identifies property boundaries in Pitkin County. The Parcel geometry is created by reading legal descriptions through Plats, Surveys, Deeds, and CAD drawing files. Approximately 15% of land in Pitkin County is privately held, which is represented in this layer. Federal lands are shown in the Forest Lands layer. Please see http://www.pitkincounty.com/458/GIS-Mapping for more information.
Recreation Easement (Pitkin County GIS 2015)
This layer contains recreation easements throughout Pitkin County with attributes that include the easement type, common name and establishment information. Please see http://www.pitkincounty.com/458/GIS-Mapping or Pitkin County Open Spaces and Trails for more information.
Federal Land Boundary (Pitkin County GIS 2015)The parcel layer and Forest (or Federal Land) layer are independently maintained layers. The Forest layer included lands owned by U.S. Forest Service (USFS), Bureau of Land Management (BLM), and the State of Colorado (State of CO). Approximately 85% of the land area in Pitkin County is Federal Land. Please see http://www.pitkincounty.com/458/GIS-Mapping for more information.SNOTEL Sites From NRCSThese files are updated daily around 7:30 am and 12:30 Pacific Time with midnight summaries of the previous day's data. The symbols are color-coded by the current snow water equivalent as a percent of the 1981-2010 normal on this date. Clicking on a symbol will reveal additional information, including a photo of the site, more real-time data, and links to charts and additional reports. Please visit http://www.wcc.nrcs.usda.gov/snotel/ for more information.
This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Link to AMAFCA site with stormwater maps and data features are available, including shapefiles and interactive maps.
To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Planning, Engineering & Permitting - GIS Mapping files
DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this site, please visit https://hub.arcgis.com/admin/
Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as a source of information in the event of an oil spill incident. ESI maps are a product of the Hazardous Materials Response Division of the Office of Response and Restoration (OR&R).ESI maps contain three types of information: shoreline habitats (classified according to their sensitivity to oiling), human-use resources, and sensitive biological resources. Most often, this information is plotted on 7.5 minute USGS quadrangles, although in Alaska, USGS topographic maps at scales of 1:63,360 and 1:250,000 are used, and in other atlases, NOAA charts have been used as the base map. Collections of these maps, grouped by state or a logical geographic area, are published as ESI atlases. Digital data have been published for most of the U.S. shoreline, including Alaska, Hawaii and Puerto Rico.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
Contains full Maps and GIS data from BOEM site. About: OUR MISSION To manage development of U.S. Outer Continental Shelf (OCS) energy, mineral, and geological resources in an environmentally and economically responsible way. Maps and GIS Data MarineCadastre.gov — This online interactive map viewer has integrated submerged lands information consisting of legal, property ownership (cadastre), physical, biological, ocean uses, and cultural information from multiple agencies in a common reference framework. Users can create, view, and print maps from this free, easy to use viewer, or can directly link these GIS data layers (web map services) into their own GIS applications. Most data are downloadable directly from the data registry. Additional map mash-ups are available to use or for simple viewing. Other tools such as OceanReports and the Environmental Studies Program Information System - ESPIS can also be found from the MarineCadastre.gov site. GIS Data map GIS Data/Shapefiles â€
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).