100+ datasets found
  1. U

    Maps of water depth derived from satellite images of selected reaches of the...

    • data.usgs.gov
    • catalog.data.gov
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carl Legleiter; Milad Niroumand-Jadidi (2024). Maps of water depth derived from satellite images of selected reaches of the American, Colorado, and Potomac Rivers acquired in 2020 and 2021 (ver. 2.0, September 2024) [Dataset]. http://doi.org/10.5066/P1APEJEP
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Carl Legleiter; Milad Niroumand-Jadidi
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Oct 10, 2020 - Aug 13, 2021
    Area covered
    Colorado, United States
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as ...

  2. a

    Water Policy Map

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +1more
    Updated Jun 11, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2018). Water Policy Map [Dataset]. https://hub.arcgis.com/maps/394bbdcb8e0f4d679e21d683a725530b
    Explore at:
    Dataset updated
    Jun 11, 2018
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    Map Direct focus for viewing Water Policy data. Please refer to https://floridadep.gov/water for more information. Originally created on 03/01/2007, and moved to Map Direct Lite on 06/26/2015. Please contact GIS.Librarian@floridadep.gov for more information.

  3. d

    DSWEmod surface water map composites generated from daily MODIS images -...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). DSWEmod surface water map composites generated from daily MODIS images - California [Dataset]. https://catalog.data.gov/dataset/dswemod-surface-water-map-composites-generated-from-daily-modis-images-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    USGS researchers with the Patterns in the Landscape – Analyses of Cause and Effect (PLACE) project are releasing a collection of high-frequency surface water map composites derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Using Google Earth Engine, the team developed customized image processing steps and adapted the Dynamic Surface Water Extent (DSWE) to generate surface water map composites in California for 2003-2019 at a 250-m pixel resolution. Daily maps were merged to create 6, 3, 2, and 1 composite(s) per month corresponding to approximately 5-day, 10-day, 15-day, and monthly products, respectively. The resulting maps are available as downloadable files for each year. Each file includes 72, 36, 24, or 12 bands that coincide with the number of maps generated in the 5-day, 10-day, 15-day, and monthly products, respectively. The bands are ordered chronologically, with the first band representing the beginning of the calendar year and the last band representing the end of the year. Each set of maps is labeled according to year and product type. There are 17 GeoTIF (.tif) raster data files for each composite product.

  4. a

    Drinking Water Map

    • hub.arcgis.com
    Updated Feb 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2018). Drinking Water Map [Dataset]. https://hub.arcgis.com/maps/2b2e28c610a24a7f8430e6490b4a8833
    Explore at:
    Dataset updated
    Feb 27, 2018
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    Map Direct focus to show Drinking Water sites. Please refer to https://floridadep.gov/water/source-drinking-water for more information. Originally created 03/01/2007, and moved to Map Direct Lite on 06/24/2015. Please contact GIS.Librarian@FloridaDEP.gov for more information.

  5. Aquifer Risk Map 2022

    • hub.arcgis.com
    • gis.data.ca.gov
    • +2more
    Updated Apr 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). Aquifer Risk Map 2022 [Dataset]. https://hub.arcgis.com/maps/waterboards::aquifer-risk-map-2022/about
    Explore at:
    Dataset updated
    Apr 4, 2021
    Dataset provided by
    California State Water Resources Control Board
    Authors
    California Water Boards
    Area covered
    Description

    This is the 2022 version of the Aquifer Risk Map. The 2021 version of the Aquifer Risk Map is available here.This aquifer risk map is developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing raw source groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This is the final 2022 map based upon feedback received from the 2021 map. A summary of methodology updates to the 2022 map can be found here.This map displays raw source groundwater quality risk per square mile section. The water quality data is based on depth-filtered, declustered water quality results from public and domestic supply wells. The process used to create this map is described in the 2022 Aquifer Risk Map Methodology document. Data processing scripts are available on GitHub. Download/export links are provided in this app under the Data Download widget.This draft version was last updated December 1, 2021. Water quality risk: This layer contains summarized water quality risk per square mile section and well point. The section water quality risk is determined by analyzing the long-tern (20-year) section average and the maximum recent (within 5 years) result for all sampled contaminants. These values are compared to the MCL and sections with values above the MCL are “high risk”, sections with values within 80%-100% of the MCL are “medium risk” and sections with values below 80% of the MCL are “low risk”. The specific contaminants above or close to the MCL are listed as well. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells.Individual contaminants: This layer shows de-clustered water quality data for arsenic, nitrate, 1,2,3-trichloropropane, uranium, and hexavalent chromium per square mile section. Domestic Well Density: This layer shows the count of domestic well records per square mile. The domestic well density per square mile is based on well completion report data from the Department of Water Resources Online System for Well Completion Reports, with records drilled prior to 1970 removed and records of “destruction” removed.State Small Water Systems: This layer displays point locations for state small water systems based on location data from the Division of Drinking Water.Public Water System Boundaries: This layer displays the approximate service boundaries for public water systems based on location data from the Division of Drinking Water.Reference layers: This layer contains several reference boundaries, including boundaries of CV-SALTS basins with their priority status, Groundwater Sustainability Agency boundaries, census block group boundaries, county boundaries, and groundwater unit boundaries. ArcGIS Web Application

  6. Generalized Water Information System (GWIS) Map

    • mapdirect-fdep.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2018). Generalized Water Information System (GWIS) Map [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/36460d325d98483b930d76304f33c95b
    Explore at:
    Dataset updated
    Jun 8, 2018
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    Map Direct focus for viewing GWIS data. Please refer to http://gwis.dep.state.fl.us/ for more information (DEP login is required). Originally created on 12/07/2006, and moved to Map Direct Lite on 03/17/2015. Please contact GIS.Librarian@floridadep.gov for more information.

  7. d

    Maps of water depth derived from satellite images of the American River...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Maps of water depth derived from satellite images of the American River acquired in October 2020 [Dataset]. https://catalog.data.gov/dataset/maps-of-water-depth-derived-from-satellite-images-of-the-american-river-acquired-in-octobe
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    American River, United States
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) for performing this analysis is provided in the function NN_depth_ensembling.m available on the main landing page for the data release of which this is a child item, along with a flow chart illustrating the four different neural network-based depth retrieval methods. To develop and test this new NNDR approach, the method was applied to satellite images from the American River near Fair Oaks, CA, acquired in October 2020. Field measurements of water depth available through another data release (Legleiter, C.J., and Harrison, L.R., 2022, Field measurements of water depth from the American River near Fair Oaks, CA, October 19-21, 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P92PNWE5) were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: American_mean-spec.tif, American_mean-depth.tif, American_NN-depth.tif, and American-single-image.tif. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.

  8. a

    New Castle County, Delaware - Water Resource Protection Area Map

    • de-firstmap-delaware.hub.arcgis.com
    • hub.arcgis.com
    Updated May 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2023). New Castle County, Delaware - Water Resource Protection Area Map [Dataset]. https://de-firstmap-delaware.hub.arcgis.com/maps/d9f1a924f20d4bbeaaf82d4aeff8e213
    Explore at:
    Dataset updated
    May 16, 2023
    Dataset authored and provided by
    State of Delaware
    Area covered
    Description

    Since 1987, the University of Delaware has prepared GIS-based Water Resource Protection Area (WRPA) mapping for New Castle County that serves to protect the quality and quantity of ground and surface water supplies as part of the Unified Development Code (UDC). The WRPA program is enabled under Section 10 (Environmental Standards) of the UDC for New Castle County. The intent of the ordinances is to protect the quality and quantity of surface water and groundwater supplies through the protection of environmentally sensitive areas important to the state’s water supply. Under the UDC, all development within recharge, wellhead, Cockeysville formation, and reservoir water resource protection areas are required to meet maximum impervious cover thresholds (20–50%) and may require groundwater recharge facilities, water monitoring, and water management facilities. Presently, over 20 percent of New Castle County’s land area is protected by the WRPA provisions of the UDC. UDWRC's 2022 GIS based mapping updates represent the sixth revision to the maps. These maps depict several data layers that represent the four main WRPA categories in New Castle County, Delaware–Cockeysville Formation, Wellhead WRPA, Surface Water WRPA, and Recharge WRPA. The maps serve as a guide for development and assist decision-making in New Castle County, Delaware. The WRPA data will soon be available for download at Delaware FirstMap and PDF versions of the maps are available on the UDWRC website.

  9. d

    Maps of water depth derived from satellite images of the Colorado River...

    • catalog.data.gov
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Maps of water depth derived from satellite images of the Colorado River acquired in March and April of 2021 [Dataset]. https://catalog.data.gov/dataset/maps-of-water-depth-derived-from-satellite-images-of-the-colorado-river-acquired-in-march-
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Colorado River
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) source code for performing this analysis is provided in the function NN_depth_ensembling.m available on the main landing page for the data release of which this is a child item, along with a flow chart illustrating the four different neural network-based depth retrieval methods. To develop and test this new NNDR approach, the method was applied to satellite images from the Colorado River near Lees Ferry, AZ, acquired in March and April of 2021. Field measurements of water depth available through another data release (Legleiter, C.J., Debenedetto, G.P., and Forbes, B.T., 2022, Field measurements of water depth from the Colorado River near Lees Ferry, AZ, March 16-18, 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P9HZL7BZ) were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: Colorado_mean-spec.tif, Colorado_mean-depth.tif, Colorado_NN-depth.tif, and Colorado-single-image.tif. In addition, to assess the robustness of the Mean-spec and NN-depth methods to the introduction of a large pulse of sediment by a flood event that occurred partway through the image time series, depth maps from before and after the flood are provided in the files Colorado_Mean-spec_after_flood.tif, Colorado_Mean-spec_before_flood.tif, Colorado_NN-depth_after_flood.tif, and Colorado_NN-depth_before_flood.tif. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.

  10. Domestic Depth Groundwater Quality (Water Quality Risk)

    • gis.data.ca.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Apr 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). Domestic Depth Groundwater Quality (Water Quality Risk) [Dataset]. https://gis.data.ca.gov/maps/4cddc28da2654fe4a0196f2c8be273ad
    Explore at:
    Dataset updated
    Apr 4, 2021
    Dataset provided by
    California State Water Resources Control Board
    Authors
    California Water Boards
    Area covered
    Description

    The aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This layer contains summarized water quality risk per census block group, square mile section, and well point. The overall census block group water quality risk is based on five risk factors (1. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) above the MCL, 2. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) within 80% of the MCL, 3. the average magnitude or results above the MCL, 4. the percent area with chemicals above the MCL, and 5. the percent area with chemicals within 80% of the MCL). The specific chemicals that contribute to these risk factors are listed as well. Higher values for each individual risk factor contribute to a higher overall score. The scores are converted to percentiles to normalize the results. Higher percentiles indicate higher water quality risk. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells, collected following a similar methodology as the Domestic Well Needs Assessment White Paper. The methodology used to calculate the risk percentiles is outlined in the Aquifer Risk Map Methodology. To provide comments or feedback on this map, please email SAFER@waterboards.ca.gov or Emily.Houlihan@Waterboards.ca.gov.Methodology for the draft aquifer risk map available for download.

  11. Pollution Impact Potential Maps - Surface Water Phosphate - Dataset -...

    • data.gov.ie
    Updated Nov 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2017). Pollution Impact Potential Maps - Surface Water Phosphate - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/pollution-impact-potential-maps-surface-water-phosphate
    Explore at:
    Dataset updated
    Nov 2, 2017
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pollution Impact Potential (PIP) maps were generated separately for nitrate and phosphate to rank critical source areas (CSAs) relative to one another from diffuse agriculture for both the groundwater and surface water receptor. The PIP maps are generated by the EPA Catchment Characterisation Tool (CCT). The CCT delineates the CSAs displayed in the PIP maps by overlaying the hydro(geo)logically susceptible areas (the likelihood of nutrient transfer due to soil and geological properties along the near surface and/or subsurface pathway) with nitrate or phosphate loadings. The nitrate and phosphate PIP maps for the surface water receptor combine the contribution from both the subsurface pathway and the near surface pathway while the groundwater receptor maps only consider the contribution from the groundwater pathway. Surface Water Receptor Phosphate PIP maps show the relative the pollution impact potential to surface water along the subsurface and near surface pathways due to phosphate loading. This map should be used to evaluate nutrient impact at the waterbody, subcatchment and catchment scale (at a resolution of less than 1:20,000). Pollution impact potential (PIP) maps rank the CSAs in descending order of risk (where Rank 1 is the highest risk) and are available for the surface water receptor for nitrate and phosphate, and the groundwater receptor for nitrate. Local pressure data has been used to generate the maps in agricultural areas where available. For urban, forestry and the remaining agricultural areas, regional sources of pressure data have been used; these areas are marked 'using regional loadings' on the PIP maps.

  12. Maps of reporting facilities – total releases to water

    • open.canada.ca
    • catalogue.arctic-sdi.org
    csv, esri rest, html +1
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2025). Maps of reporting facilities – total releases to water [Dataset]. https://open.canada.ca/data/en/dataset/94a51051-ad11-499a-b5f1-8c97b29f695c
    Explore at:
    esri rest, csv, html, wmsAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2023 - Dec 31, 2023
    Description

    The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. The files below contain a map of Canada showing the locations of all facilities that reported direct releases to surface waters to the NPRI. The data are for the most recent reporting year, by reported total quantities of these releases. The map is available in both ESRI REST (to use with ARC GIS) and WMS (open source) formats. For more information about the individual reporting facilities, a dataset is available in a CSV format. Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html

  13. m

    MassDEP Estimated Public Drinking Water System Service Area Boundaries

    • gis.data.mass.gov
    Updated Aug 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). MassDEP Estimated Public Drinking Water System Service Area Boundaries [Dataset]. https://gis.data.mass.gov/maps/d77c022b9fd946e0831904774aa114e1
    Explore at:
    Dataset updated
    Aug 19, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe

  14. PWS boundary and reg agency map

    • gis.data.ca.gov
    • calepa-dtsc.opendata.arcgis.com
    Updated Apr 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). PWS boundary and reg agency map [Dataset]. https://gis.data.ca.gov/maps/8b525fb3a3604e45ba9ffffaabebb777
    Explore at:
    Dataset updated
    Apr 5, 2021
    Dataset provided by
    California State Water Resources Control Board
    Authors
    California Water Boards
    Area covered
    Description

    Use Constraints:This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current boundaries of PWSs in California. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use.Description:This mapping tool provides a representation of the general PWS boundaries for water service, wholesaler and jurisdictional areas. The boundaries were created originally by collection via crowd sourcing by CDPH through the Boundary Layer Tool, this tool was retired as of June 30, 2020. State Water Resources Control Board – Division of Drinking Water is currently in the process of verifying the accuracy of these boundaries and working on a tool for maintaining the current boundaries and collecting boundaries for PWS that were not in the original dataset. Currently, the boundaries are in most cases have not been verified. Map Layers· Drinking Water System Areas – representation of the general water system boundaries maintained by the State Water Board. This layer contains polygons with associated data on the water system and boundary the shape represents.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset· California Senate Districts – represents the boundaries of the senate districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California Senate Districts – represents the boundaries of the assembly districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California County – represents the boundaries of the counties in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.Informational Pop-up Box for Boundary layer· Water System No. – unique identifier for each water system· Water System Name – name of water system· Regulating Agency – agency overseeing the water system· System Type – classification of water system.· Population the approximate population served by the water system· Boundary Type – the type of water system boundary being displayed· Address Line 1 – the street or mailing address on file for the water system· Address Line 2 – additional line for street or mailing address on file for the water system, if applicable· City – city where water system located or receives mail· County – county where water system is located· Verification Status – the verification status of the water system boundary· Verified by – if the boundary is verified, the person responsible for the verification Date Created and Sources:This web app was most recently updated on July, 21, 2021. Each layer has a data created date and data source is indicated in the overview/metadata page and is valid up to the date provided.

  15. n

    SRTM Water Body Data

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    • +1more
    Updated Jan 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). SRTM Water Body Data [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567909-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    The SRTM Water Body Data files are a by-product of the data editing performed by the National Geospatial-Intelligence Agency (NGA) to produce the finished SRTM Digital Terrain Elevation Data Level 2 (DTED® 2). In accordance with the DTED® 2 specification, the terrain elevation data have been edited to portray water bodies that meet minimum capture criteria. Ocean, lake and river shorelines were identified and delineated. Lake elevations were set to a constant value. Ocean elevations were set to zero. Rivers were stepped down monotonically to maintain proper flow. After this processing was done, the shorelines from the one arc second (approx. 30-meter) DTED® 2 were saved as vectors in ESRI 3-D Shapefile format.

    In most cases, two orthorectified image mosaics (one for ascending passes and one for descending passes) at a one arc second resolution were available for identifying water bodies and delineating shorelines in each 1 x1 cell. These were used as the primary source for water body editing. The guiding principle for this editing was that water must be depicted as it was in February 2000 at the time of the shuttle flight. A Landcover water layer and medium-scale maps and charts were used as supplemental data sources, generally as supporting evidence for water identified in the image mosaics. Since the Landcover water layer was derived mostly from Landsat 5 data collected a decade earlier than the Shuttle mission and the map sources had similar currency problems, there were significant seasonal and temporal differences between the depiction of water in the ancillary sources and the actual extent of water bodies in February 2000 in many instances. In rare cases, where the SRTM image mosaics were missing or unusable, Landcover was used to delineate the water in the SRTM cells. The DTED® header records for those cells are documented accordingly.

  16. Maps of reporting facilities – total releases to land

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, esri rest, html +1
    Updated Dec 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2024). Maps of reporting facilities – total releases to land [Dataset]. https://open.canada.ca/data/en/dataset/49deb8b2-10a6-4b4a-ad7c-9cbc2eda260b
    Explore at:
    html, esri rest, wms, csvAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2023 - Dec 31, 2023
    Description

    The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. The files below contain a map of Canada showing the locations of all facilities that reported direct releases to land to the NPRI. The data are for the most recent reporting year, by reported total quantities of these releases. The map is available in both ESRI REST (to use with ARC GIS) and WMS (open source) formats. For more information about the individual reporting facilities, a dataset is available in a CSV format. Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html

  17. H

    Water Mapping App

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Oct 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arash Modaresi Rad (2020). Water Mapping App [Dataset]. https://www.hydroshare.org/resource/4dbd35f77b89416eaa0e44f5119eb72c
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Oct 24, 2020
    Dataset provided by
    HydroShare
    Authors
    Arash Modaresi Rad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1984 - Dec 31, 2020
    Description

    A Google Earth Engine App developed to delineate water bodies around the globe from 1984 until present and to provide 16 day estimates of surface area of water bodies as well as shapefiles to the user. The app uses a novel framework to filters only those images that cloud is on top of the water body and allows users to choose from a list of spectral water indices to map water bodies. The app also allows users to select the choice of threshold (i.e., a fixed zero threshold or dynamic threshold to separate water form non-water background).

  18. Far North Hydro Elevation Maps

    • geohub.lio.gov.on.ca
    • hub.arcgis.com
    Updated Mar 30, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ontario Ministry of Natural Resources and Forestry (2012). Far North Hydro Elevation Maps [Dataset]. https://geohub.lio.gov.on.ca/maps/c18f879fe8fb4248a32773d30586bb0d
    Explore at:
    Dataset updated
    Mar 30, 2012
    Dataset provided by
    Ministry of Natural Resourceshttp://www.ontario.ca/page/ministry-natural-resources
    Authors
    Ontario Ministry of Natural Resources and Forestry
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    Zoom in on the map above and click your area of interest to determine which PDF(s) you require for download.These maps are available for the Far North Land Use Planning Area at 2 scales (1:100,000 and 1:250,000). The maps were created as a resource for community-based Land Use Planning in the Far North of Ontario.

    Additional Documentation

    Index map with 100K and 250K tiles, secondary watersheds and Far North Communities (PDF)

    GeoPDF User Guide (PDF)

    Status

    Completed: Production of the data has been completed

    Maintenance and Update Frequency

    Not planned: There are no plans to update the data

    Contact

    Ontario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca

  19. d

    Water Quality Map Application

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Aug 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Water Quality Map Application [Dataset]. https://catalog.data.gov/dataset/water-quality-map-application
    Explore at:
    Dataset updated
    Aug 11, 2023
    Description

    The collection of water quality data has been an integral part of the International Boundary and Water Commission's mission and goal since the signing of the 1944 Water Treaty. The IBWC collects water quality data for several transboundary rivers, the Rio Grande, Colorado River, New River, Alamo River, and the Tijuana River, along with stations in the Pacific Ocean known as the South Bay Ocean Outfall Water Quality Monitoring Program (Pacific Ocean). The data is collected and exchanged between the United States and Mexico as agreed to under the IBWC 1944 Water Treaty and the subsequent agreements made by the IBWC to implement the various water quality monitoring programs along the border. Water quality goals for each program are either specified in an IBWC Minute (such as Minute No. 264 for New River), or compared to water quality standards using United States or Mexican standards for rivers and streams.

  20. Maps of reporting facilities – virtual globe format

    • open.canada.ca
    • catalogue.arctic-sdi.org
    html, kml, kmz
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2024). Maps of reporting facilities – virtual globe format [Dataset]. https://open.canada.ca/data/dataset/004f6b03-ac84-4c7c-90cb-35949e6260bc
    Explore at:
    kmz, html, kmlAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2021 - Dec 31, 2023
    Description

    The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. Each file contains the NPRI map layers in a KMZ format that you can use with virtual globe software such as Google Earth™. Data are available for the last two reporting years. You can filter the data by province or industry type. Select a facility to view a report that summarizes its pollutant releases, disposals and transfers. Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Carl Legleiter; Milad Niroumand-Jadidi (2024). Maps of water depth derived from satellite images of selected reaches of the American, Colorado, and Potomac Rivers acquired in 2020 and 2021 (ver. 2.0, September 2024) [Dataset]. http://doi.org/10.5066/P1APEJEP

Maps of water depth derived from satellite images of selected reaches of the American, Colorado, and Potomac Rivers acquired in 2020 and 2021 (ver. 2.0, September 2024)

Explore at:
Dataset updated
Sep 30, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Authors
Carl Legleiter; Milad Niroumand-Jadidi
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Time period covered
Oct 10, 2020 - Aug 13, 2021
Area covered
Colorado, United States
Description

Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as ...

Search
Clear search
Close search
Google apps
Main menu