Land Cover Map 2021 (LCM2021) is a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2021. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2021. Land cover maps describe the physical material on the surface of the country. For example grassland, woodland, rivers & lakes or man-made structures such as roads and buildingsThis is a 10 m Classified Pixel dataset, classified to create a single mosaic of national cover. Provenance and quality:UKCEH’s automated land cover classification algorithms generated the 10m classified pixels. Training data were automatically selected from stable land covers over the interval of 2017 to 2019. A Random Forest classifier used these to classify four composite images representing per season median surface reflectance. Seasonal images were integrated with context layers (e.g., height, aspect, slope, coastal proximity, urban proximity and so forth) to reduce confusion among classes with similar spectra.Land cover was validated by organising the pixel classification into a land parcel framework (the LCM2021 Classified Land Parcels product). The classified land parcels were compared to known land cover producing confusion matrix to determine overall and per class accuracy.View full metadata information and download the data at catalogue.ceh.ac.uk
The CNES Land Cover Map (Occupation des Sols, OSO) produces land classification for Metropolitan France at 10 m spatial resolution based on Sentinel-2 L2A data within the Theia Land Cover CES framework. Maps for 2021, 2020, 2019, and 2018 use a 23-categories nomenclature. For earlier maps in 2017 and 2016, a fully compatible 17-classes nomenclature is employed.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This data sets include yearly maps of land cover classification for the state of Mato Grosso, Brasil, from 2001 to 2016, based on MODIS image time series at 250 meter spatial resolution. Ground samples consisting of 2,115 time series with known labels are used as training data for a support vector machine classifier. The classes include natural and human-transformed land areas, discriminating among different agricultural crops in state of Mato Grosso, Brazil's agricultural frontier. The results provide spatially explicit estimates of productivity increases in agriculture as well as the trade-offs between crop and pasture expansion. Quality assessment using a 5-fold cross-validation of the training samples indicates an overall accuracy of 93% and the following user's and producer's accuracy for the land cover classes: […]
This dataset consists of the vector version of the Land Cover Map 2015 (LCM2015) for Great Britain. The vector data set is the core LCM data set from which the full range of other LCM2015 products is derived. It provides a number of attributes including land cover at the target class level (given as an integer value and also as text), the number of pixels within the polygon classified as each land cover type and a probability value provided by the classification algorithm (for full details see the LCM2015 Dataset Documentation). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/satellite-land-cover/satellite-land-cover_8423d13d3dfd95bbeca92d9355516f21de90d9b40083a915ead15a189d6120fa.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/satellite-land-cover/satellite-land-cover_8423d13d3dfd95bbeca92d9355516f21de90d9b40083a915ead15a189d6120fa.pdf
This dataset provides global maps describing the land surface into 22 classes, which have been defined using the United Nations Food and Agriculture Organization’s (UN FAO) Land Cover Classification System (LCCS). In addition to the land cover (LC) maps, four quality flags are produced to document the reliability of the classification and change detection. In order to ensure continuity, these land cover maps are consistent with the series of global annual LC maps from the 1990s to 2015 produced by the European Space Agency (ESA) Climate Change Initiative (CCI), which are also available on the ESA CCI LC viewer. To produce this dataset, the entire Medium Resolution Imaging Spectrometer (MERIS) Full and Reduced Resolution archive from 2003 to 2012 was first classified into a unique 10-year baseline LC map. This is then back- and up-dated using change detected from (i) Advanced Very-High-Resolution Radiometer (AVHRR) time series from 1992 to 1999, (ii) SPOT-Vegetation (SPOT-VGT) time series from 1998 to 2012 and (iii) PROBA-Vegetation (PROBA-V), Sentinel-3 OLCI (S3 OLCI) and Sentinel-3 SLSTR (S3 SLSTR) time series from 2013. Beyond the climate-modelling communities, this dataset’s long-term consistency, yearly updates, and high thematic detail on a global scale have made it attractive for a multitude of applications such as land accounting, forest monitoring and desertification, in addition to scientific research.
https://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0
Background and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region.
Acknowledgements
Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
This data set includes: (1) fine-scale snow and land cover maps from two mountainous study sites in the Western U.S., produced using machine-learning models trained to extract land cover data from WorldView-2 and WorldView-3 stereo panchromatic and multispectral images; (2) binary snow maps derived from the land cover maps; and (3) 30 m and 465 m fractional snow-covered area (fSCA) maps, produced via downsampling of the binary snow maps. The land cover classification maps feature between three and six classes common to mountainous regions and integral for accurate stereo snow depth mapping: illuminated snow, shaded snow, vegetation, exposed surfaces, surface water, and clouds. Also included are Landsat and MODSCAG fSCA map products. The source imagery for these data are the Maxar WorldView-2 and Maxar WorldView-3 Level-1B 8-band multispectral images, orthorectified and converted to top-of-atmosphere reflectance. These Level-1B images are available under the NGA NextView/EnhancedView license.
This is the web map that is used in the U.S. Fish &Wildlife Service's Alaska Region online portal for 1:30,000 scale geoPDF topographic maps of the National Wildlife Refuges within the state of Alaska.The maps accessible via the online portal cover 100% of the Alaska National Wildlife Refuges, for a total of 604 maps. Each map covers an area 25 miles east/west by 25 miles north/south, for a total of 625 square miles per map sheet. The maps display land ownership within the Refuges, as well as Refuge and Wilderness boundaries, and towships and ranges (the Public Land Survey System , or PLSS), all overlaid on top of U.S. Geological Survey 1:63,360 scale hillshaded topographic maps.These maps are in the geoPDF format, which is the standard Adobe PDF format, with the addition of geographic referencing information embedded in the file. This allows the user to load the maps into a GPS-enabled mobile device (phone, tablet, etc.) for reference, navigation, and data-recording in the field, without the need for a cell phone connection.
Human use of the land has a large effect on the structure of terrestrial ecosystems and the dynamics of biogeochemical cycles. For this reason, terrestrial ecosystem and biogeochemistry models require moderate resolution information on land use in order to make realistic predictions. Few such datasets currently exist.
This collection consists of output from models that estimate the spatial pattern of land use in four land-use categories by relating a high-resolution land-cover dataset to state-level census data on land use. The models have been parameterized using a goodness-of-fit measure.
The land cover product used was from the IGBP DISCover global product, derived from 1 km AVHRR imagery, with 16 land cover classes (Belward et al., 1999). Land-use data at state-level resolution came from the USDA's Major Land Uses database (USDA, 1996), aggregated into the four general land-use categories described below.
The model was used to generate maps of land use in 1992 for the conterminous U.S. at 0.5 degree spatial resolution. Two different parameterization schemes were used to spatially interpolate land use from land cover, based on the state-level land use census data: 1) a National Parameterization, and 2) a Regional Parameterization.
For the National Parameterization, a single parameterization relating aggregate land cover and state-level land use. For the Regional Parameterization, a separate parameterization was used for each of seven different regions. The seven regions include: Northeast, Southeast, East North-central, West North-central, Southern Plains, Mountain, and Pacific. These regions are substantially different in terms of land use and land cover. In both cases, the results are a nationally gridded map at 0.5 degrees of land use categories for cropland, pasture/range, forest, and other land use; the other land use category is also further spilt into three additional subcategories (forested, non-forested, non-vegetated).
This project is currently being extended to other regions of the globe, and for other time periods, where both land use census data and image-derived land cover data are available.
Available Datasets:
1) US Land Use - 1992 National Parameterization 2) US Land Use - 1992 Regional Parameterization
Each dataset has 4 major land use categories and 3 subcategories of the Other major land use category.
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products of the Scotts Creek Watershed in Lake County, California, using National Agriculture Imagery Program (NAIP) imagery from 2018, 2020 and 2022. The imagery was downloaded from United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) Geospatial Data Gateway (https://datagateway.nrcs.usda.gov). The NAIP imagery from 2018, 2020 and 2022 was classified using Random Forest Modeling to produce land cover maps with three main classifications – bare, vegetation, and shadows. A total of 600 independent reference points were used in the accuracy assessment. The overall accuracy for all classes for each dataset is 98%. See attached ScottsCreek_20XX_AccuracyAssessment.csv files (contained within each LandCoverMap_associated_files_20XX.zip for each year respectively) for details. A preview image of the land cover map for 2018 is attached to this data release as an example (see LandCoverMap_RF_ScottsCreekWatershed_USGS2022_CC0.png). The percentage of bare, vegetation and shadow pixels were calculated for the complete watershed and each individual NHDPlus2.1 catchment basins (slightly modified to support hydrological modeling). These metrics can be used to quantify bare and vegetated areas and detect and quantify vegetation changes over time. Users should be aware of the inherent errors in remote sensing products.
NASA's Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Land Cover Mapping and Estimation (GLanCE) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management.
The GLanCE data product provides seven layers: the land cover class, the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.
Known Issues * Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. * High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs. * The GlanCE data product tends to modestly overpredict developed land cover in arid regions.
https://artefacts.ceda.ac.uk/licences/specific_licences/esacci_landcover_terms_and_conditions.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/esacci_landcover_terms_and_conditions.pdf
As part of the ESA Land Cover Climate Change Initiative (CCI) project a set of Global Land Cover Maps have been produced. These are available at 300m spatial resolution for three epochs centred on the year 2010 (2008-2012), 2005 (2003-2007) and 2000 (1998-2002), where each epoch covers a 5-year period.
Each pixel value corresponds to the label of a land cover class defined using UN-LCCS classifiers. For each epoch, the land cover map is delivered along with 4 quality flags which document the reliability of the classification. These are described further in the Product User Guides.
Further Land Cover CCI products, user tools and a product viewer are available at: http://maps.elie.ucl.ac.be/CCI/viewer/index.php
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data
Attribute table for merged rasters
Technical validation data
Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
[Metadata] Description: Agricultural Land Use Maps (ALUM) for islands of Kauai, Oahu, Maui, Molokai, Lanai and Hawaii as of 1978-1980. Sources: State Department of Agriculture; Hawaii Statewide GIS Program, Office of Planning. Note: August, 2018 - Corrected one incorrect record, removed coded value attribute domain.For more information on data sources and methodologies used, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/alum.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Government Land Office maps (GLOs) are a result of the effort to survey all United States public lands before settlement. Starting in 1812 land was divided into square six mile blocks called townships, then subdivided into sections and ranges. Each subdivided area was surveyed and given its own map or GLO. During this process surveyors were required to indicate cultural resources such as roads and Indian trails and standardized symbols were used to represent geographic features. These GLOs are now maintained by the Bureau of Land Management as part of the official Land Status and Cadastral Survey records. As land was divided into parcels of individual ownership additional cadastral survey maps were created over time. For this reason there are often multiple GLOs or "cadastral survey maps" for one township / range, generally numbered one through four. For this seamless GLO layer, DAHP focused solely on the more historical GLOs which were usually listed as image number one or two for that specific township / range in the BLM Cadastral Survey records. In some cases no GLOs were available for review. Such areas included National Forest Lands, National Parks, Indian Reservations, and remote wilderness areas.
This is the land parcels (polygon) dataset for the UKCEH Land Cover Map of 2018(LCM2018) representing Great Britain. It describes Great Britain's land cover in 2018 using UKCEH Land Cover Classes, which are based on UK Biodiversity Action Plan broad habitats. This dataset was derived from the corresponding LCM2018 20m classified pixels dataset. All further LCM2018 datasets for Great Britain are derived from this land parcel product. A range of land parcel attributes are provided. These include the dominant UKCEH Land Cover Class given as an integer value, and a range of per-parcel pixel statistics to help to assess classification confidence and accuracy; for a full explanation please refer to the dataset documentation. LCM2018 represents a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2018. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2018. LCM2018 was simultaneously released with LCM2017 and LCM2019. These are the latest in a series of UKCEH land cover maps, which began with the 1990 Land Cover Map of Great Britain (now usually referred to as LCM1990) followed by UK-wide land cover maps LCM2000, LCM2007 and LCM2015. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Donation sent to the University of Idaho Library Government Documents Librarian a CD containing General Land Office maps on it. A readme file on the CD contains this information:"I obtained the attached GLO maps from Mitch Price at River Design Group who obtained them from another source. These maps apparently do not have a date, I assume it was stripped off when they were rectified. These maps show the Great Northern Rail line, it arrived in Bonners Ferry in 1892. The Spokane International Railroad (Union Pacific purchased this line) built a bridge across the Kootenai R. in 1906." "I am a bit puzzled on the map dates, the Kootenai River Master Plan indicated these maps are 1862-65 but they also show the Great Northern Rail line but not the Spokane International Railroad which seems to place them somewhere between 1892 - 1906 unless perhaps they were revised at a later date."Gary Barton USGS Tacoma, WA 253-552-1613 officegbarton@usgs.gov
This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
Land Cover Map 2021 (LCM2021) is a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2021. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2021. Land cover maps describe the physical material on the surface of the country. For example grassland, woodland, rivers & lakes or man-made structures such as roads and buildingsThis is a 10 m Classified Pixel dataset, classified to create a single mosaic of national cover. Provenance and quality:UKCEH’s automated land cover classification algorithms generated the 10m classified pixels. Training data were automatically selected from stable land covers over the interval of 2017 to 2019. A Random Forest classifier used these to classify four composite images representing per season median surface reflectance. Seasonal images were integrated with context layers (e.g., height, aspect, slope, coastal proximity, urban proximity and so forth) to reduce confusion among classes with similar spectra.Land cover was validated by organising the pixel classification into a land parcel framework (the LCM2021 Classified Land Parcels product). The classified land parcels were compared to known land cover producing confusion matrix to determine overall and per class accuracy.View full metadata information and download the data at catalogue.ceh.ac.uk