Facebook
TwitterThe MassGIS General Reference Map contains a variety of features, all from the MassGIS database. The map was designed by MassGIS staff in ESRI's ArcMap 10.x software and was cached (pre-rendered) into tile layers for the Web using ArcGIS Server 10.x. The caching process greatly speeds the display of all basemap features. The tile layers are hosted at MassGIS' ArcGIS Online organizational account.For full details see http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/online-mapping/massgis-basemap.html.
Facebook
TwitterGuide to Publicly Available Demographic Data This data source guide is a reference tool describing data important to workforce professionals. We created the guide because multiple federal and state organizations provide data relevant to workforce professionals; and skillful data use requires understanding: the sources of data how often it is collected, for what years it is available, and a link to the data release dates the geographic level of analysis (state, county, etc.) the variables included in the data how to access and use the data
Facebook
TwitterArcGIS Online map preloaded with many commonly used GIS data layers.This map can be used as a template to make new online maps so that they contain these common layers or can be used on-the-fly to customize a map with the needed layers and answer a simple question or problem. This map is also preset to be a PLSS locator with the sections layer turned on (at a set extent) to displays the Township, Range & Section information in the popup window when clicked.
Facebook
TwitterThe Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
This dataset was created by Immulu
Released under Community Data License Agreement - Permissive - Version 1.0
Facebook
TwitterThe digital city map, also spatial reference level 3 (RBE3), is the basis for the Official City Map 1:20,000. It is the main product from the spatial data of the spatial reference level 3. The internet map of the city of Braunschweig is also derived from this data. In terms of content, he shows the road network of Braunschweig, the settlement areas, the water network, the railway lines as well as the land use by forests, green areas and agricultural land. The Official City Map 1:20000 Sheet Size: 116 x 103 cm, folded to 11.6 x 25.7 cm, map image 90 x 100 cm circumference: City map, maps of the city centre and region, street directory, aerial view of the entire city. Excerpts from the digital city map are published individually according to the intended use. In doing so, an ongoing database can be used. The generalisation is tailored to the output in scales between 1:15000 and 1:25000.
Facebook
TwitterThis National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
TwitterThis dataset describes the Release File structure of SNOMED CT, referred to as Release Format 2 (RF2). The US Edition of SNOMED CT is the official source of SNOMED CT for use in US healthcare systems. The US Edition is a standalone release that combines the content of both the US Extension and the International release of SNOMED CT.
A Simple Map Reference set is used to represent one-to-one maps between SNOMED CT concepts and codes in another terminology, classification or code system.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Nazmus Sadat013
Released under Apache 2.0
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The TU Wien flood mapping algorithm is a Sentinel-1-based workflow using Bayes Inference at the pixel level. The algorithm is currently deployed in global operations under the Copernicus GFM project and have been shown to work generally well. However, the current approach has overestimation issues related to imperfect no-flood probability modeling. In a recent study, we proposed and compared an Exponential Filter derived from no-flood references versus the original Harmonic Model. We have conducted experiments on seven study sites for flooded and no-flood scenarios. A full description and discussion are found in the paper: Assessment of Time-Series-Derived No-Flood Reference for SAR-based Bayesian Flood Mapping.
Facebook
TwitterLearn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets
Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.
Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.
airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).windvectors.csv, annual-precip.json).This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Map (1:10m) | us-10m.json | 627 KB | TopoJSON | CC-BY-4.0 | US state and county boundaries. Contains states and counties objects. Ideal for choropleths. | id (FIPS code) property on geometries |
| World Map (1:110m) | world-110m.json | 117 KB | TopoJSON | CC-BY-4.0 | World country boundaries. Contains countries object. Suitable for world-scale viz. | id property on geometries |
| London Boroughs | londonBoroughs.json | 14 KB | TopoJSON | CC-BY-4.0 | London borough boundaries. | properties.BOROUGHN (name) |
| London Centroids | londonCentroids.json | 2 KB | GeoJSON | CC-BY-4.0 | Center points for London boroughs. | properties.id, properties.name |
| London Tube Lines | londonTubeLines.json | 78 KB | GeoJSON | CC-BY-4.0 | London Underground network lines. | properties.name, properties.color |
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Airports | airports.csv | 205 KB | CSV | Public Domain | US airports with codes and coordinates. | iata, state, `l... |
Facebook
TwitterThe Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.
Facebook
TwitterThese data were compiled for the use of training natural feature machine learning (GeoAI) detection and delineation. The natural feature classes include the Geographic Names Information System (GNIS) feature types Basins, Bays, Bends, Craters, Gaps, Guts, Islands, Lakes, Ridges and Valleys, and are an areal representation of those GNIS point features. Features were produced using heads-up digitizing from 2018 to 2019 by Dr. Sam Arundel's team at the U.S. Geological Survey, Center of Excellence for Geospatial Information Science, Rolla, Missouri, USA, and Dr. Wenwen Li's team in the School of Geographical Sciences at Arizona State University, Tempe, Arizona, USA.
Facebook
TwitterThis data set, part of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program, consists of three as-complete-as-possible mosaic maps of velocities on the Antarctic ice sheet for the time periods 1995–2001, 2007–2009, and 2014–2017. The maps are posted at 450 m in the WGS 84/Antarctic Polar Stereographic projection. In addition to ice velocity, the data set provides maps of velocity error and standard deviation; counts of velocity estimates used per pixel; date ranges; and masks that delineate the ice fronts and grounding lines for the each period.
Facebook
TwitterThis is a map that brings together the Statewide Transportation Improvement Programs, general transportation improvement programs, and planned road project data from most of the States of the U.S. It is incomplete and based on available but NOT NECESSARILY AUTHORITATIVE data. All layers are feature services on ArcGIS Online or from the respective State DOT's own server. This map is meant to serve as an initial proof of concept and as a resource for web map projects that will use this data.
Facebook
TwitterThe Human Geography Dark Map (World Edition) web map provides a detailed world basemap with a dark monochromatic style and content adjusted to support human geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Dark Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Dark Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Dark Base, a simple basemap consisting of land areas in a very dark gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in A Dark Version of the Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
For the purposes of training AI-based models to identify (map) road features in rural/remote tropical regions on the basis of true-colour satellite imagery, and subsequently testing the accuracy of these AI-derived road maps, we produced a dataset of 8904 satellite image ‘tiles’ and their corresponding known road features across Equatorial Asia (Indonesia, Malaysia, Papua New Guinea). Methods
The main dataset shared here was derived from a set of 200 input satellite images, also provided here. These 200 images are effectively ‘screenshots’ (i.e., reduced-resolution copies) of high-resolution true-colour satellite imagery (~0.5-1m pixel resolution) observed using the Elvis Elevation and Depth spatial data portal (https://elevation.fsdf.org.au/), which here is functionally equivalent to the more familiar Google Earth. Each of these original images was initially acquired at a resolution of 1920x886 pixels. Actual image resolution was coarser than the native high-resolution imagery. Visual inspection of these 200 images suggests a pixel resolution of ~5 meters, given the number of pixels required to span features of familiar scale, such as roads and roofs, as well as the ready discrimination of specific land uses, vegetation types, etc. These 200 images generally spanned either forest-agricultural mosaics or intact forest landscapes with limited human intervention. Sloan et al. (2023) present a map indicating the various areas of Equatorial Asia from which these images were sourced.
IMAGE NAMING CONVENTION
A common naming convention applies to satellite images’ file names:
XX##.png
where:
XX – denotes the geographical region / major island of Equatorial Asia of the image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])
INTERPRETING ROAD FEATURES IN THE IMAGES For each of the 200 input satellite images, its road was visually interpreted and manually digitized to create a reference image dataset by which to train, validate, and test AI road-mapping models, as detailed in Sloan et al. (2023). The reference dataset of road features was digitized using the ‘pen tool’ in Adobe Photoshop. The pen’s ‘width’ was held constant over varying scales of observation (i.e., image ‘zoom’) during digitization. Consequently, at relatively small scales at least, digitized road features likely incorporate vegetation immediately bordering roads. The resultant binary (Road / Not Road) reference images were saved as PNG images with the same image dimensions as the original 200 images.
IMAGE TILES AND REFERENCE DATA FOR MODEL DEVELOPMENT
The 200 satellite images and the corresponding 200 road-reference images were both subdivided (aka ‘sliced’) into thousands of smaller image ‘tiles’ of 256x256 pixels each. Subsequent to image subdivision, subdivided images were also rotated by 90, 180, or 270 degrees to create additional, complementary image tiles for model development. In total, 8904 image tiles resulted from image subdivision and rotation. These 8904 image tiles are the main data of interest disseminated here. Each image tile entails the true-colour satellite image (256x256 pixels) and a corresponding binary road reference image (Road / Not Road).
Of these 8904 image tiles, Sloan et al. (2023) randomly selected 80% for model training (during which a model ‘learns’ to recognize road features in the input imagery), 10% for model validation (during which model parameters are iteratively refined), and 10% for final model testing (during which the final accuracy of the output road map is assessed). Here we present these data in two folders accordingly:
'Training’ – contains 7124 image tiles used for model training in Sloan et al. (2023), i.e., 80% of the original pool of 8904 image tiles. ‘Testing’– contains 1780 image tiles used for model validation and model testing in Sloan et al. (2023), i.e., 20% of the original pool of 8904 image tiles, being the combined set of image tiles for model validation and testing in Sloan et al. (2023).
IMAGE TILE NAMING CONVENTION A common naming convention applies to image tiles’ directories and file names, in both the ‘training’ and ‘testing’ folders: XX##_A_B_C_DrotDDD where
XX – denotes the geographical region / major island of Equatorial Asia of the original input 1920x886 pixel image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])
A, B, C and D – can all be ignored. These values, which are one of 0, 256, 512, 768, 1024, 1280, 1536, and 1792, are effectively ‘pixel coordinates’ in the corresponding original 1920x886-pixel input image. They were recorded within the names of image tiles’ sub-directories and file names merely to ensure that names/directory were uniquely named)
rot – implies an image rotation. Not all image tiles are rotated, so ‘rot’ will appear only occasionally.
DDD – denotes the degree of image-tile rotation, e.g., 90, 180, 270. Not all image tiles are rotated, so ‘DD’ will appear only occasionally.
Note that the designator ‘XX##’ is directly equivalent to the filenames of the corresponding 1920x886-pixel input satellite images, detailed above. Therefore, each image tiles can be ‘matched’ with its parent full-scale satellite image. For example, in the ‘training’ folder, the subdirectory ‘Bo12_0_0_256_256’ indicates that its image tile therein (also named ‘Bo12_0_0_256_256’) would have been sourced from the full-scale image ‘Bo12.png’.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City of Dunwoody Basic General Reference PDF Map
Facebook
TwitterThe Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.
Facebook
TwitterThe MassGIS General Reference Map contains a variety of features, all from the MassGIS database. The map was designed by MassGIS staff in ESRI's ArcMap 10.x software and was cached (pre-rendered) into tile layers for the Web using ArcGIS Server 10.x. The caching process greatly speeds the display of all basemap features. The tile layers are hosted at MassGIS' ArcGIS Online organizational account.For full details see http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/online-mapping/massgis-basemap.html.