Facebook
TwitterMaps of rural areas in the south-east region (Census 2001).
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>
Facebook
TwitterThe Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 50 main crop types, grassland, and non-agricultural land covers, such as Trees, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2017 – August 2017. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. Refer to the CROME specification document. Attribution statement: © Rural Payments Agency
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Crop Map of England (CROME) South West is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 20 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2016 – August 2016. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. refer to the CROME specification document Attribution statement: © Rural Payments Agency
Facebook
TwitterAbstractThis is a spatial dataset that predicts the distribution of broad-scale marine habitats (EUNIS Level 3 classification) within across the Holderness coast nearshore region, produced through the interpretation of geophysical datasets combined with existing benthic sample data.Why is it important that NE publishes this data?The Holderness coast is a unique and diverse marine ecosystem, but it is sensitive to increasing infrastructure and development applications in the region. This broad-scale habitat map is an important addition to Natural England's evidence base and will help to guide our advice on marine and coastal development in the area. advice. It also likely to be a useful resource for developers during the planning process, particularly to guide where further survey efforts should be targeted, and may too be of interest to any other stakeholders working along the Holderness coast.ExtentYorkshire Coast: The nearshore area between Spurn Point and the area South of Flamborough Head, encompassing Smithic Sands and Holderness Inshore Marine Conservation Zone (MCZ), and parts of Flamborough and Filey Coast Special Protection Area (SPA), Flamborough Head Special Area of Conservation (SAC) and the Site of Special Scientific Interest (SSSI) and Humber Estuary SAC, SPA and SSSILineageA number of data layers from different sources were geo-processed to produce this map layer.The two main data layers used were:(a) Bathymetry mosaic. These data were acquired by the UK Hydrographic Office, on behalf of the UK Civil Hydrography Programme and the Marine Conservation Zones (DEFRA). The British Geological Society (BGS) processed the raw data to form single surface bathymetry mosaics, and it was these mosaic layers that were shared to Natural England via Open Government License, and subsequently passed on to our contractors, Envision.(b) Backscatter layers. These data were collected and processed for the Maritime and Coastguard Agency (MCA) under the Civil Hydrography Programme. These layers were download directly from the BGS GeoIndex viewer, by our contractors Envision, under Open Government License.Our contractors, Envision, combined both datasets (a) and (b) to create a geophysical dataset for the Project Area, from which parameters such as rugosity and variability were derived, as these are good indicators of heterogenic habitats.Envision then integrated these physical derivatives, with existing benthic sample data (c, d, e), to infer the distribution of habitats across the Project Area. The benthic sample data was sourced from the following national datasets, all available under Open Government License / without limitations of use:(c) Cefas OneBenthic (including data from the Regional Seabed Monitoring Plan)(d) EMODnet Seabed Habitats - collated habitat point data (2019)(d) BGS GeoIndex Sample Data - shallow geology and geophysics data collected as either part of regional or local mapping work, or provided to BGS by third parties.(e) Cefas OneBenthic (including data from the Regional Seabed Monitoring Plan)Quality Assurance of the final map product was carried out by Envision and internally at Natural England.Full metadata can be viewed on environment.data.gov.uk
Facebook
TwitterThis dataset consists of an interactive map (and supporting guidance) containing background information that informs how we understand flood risk across the South West River Basin District. The map shows the River Basin District, component river basins and the coastline together with layers showing land use and topography.
This dataset together with equivalent datasets for each River Basin District, supports the Preliminary Flood Risk Assessment for England report which has been written to meet the requirements of the Flood Risk Regulations (2009) - to complete an assessment of flood risk and produce supporting maps of river catchments.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The HABMAP project was set up in response to the need for better spatial awareness of habitat distributions in the Southern Irish Sea. This work produced habitat maps of the seabed using novel predictive modelling techniques. This dataset is related to the predictive modelling only. The HABMAP Extension Project has built on the methods developed during the original project, and has repeated the modelling work using higher resolution / improved input datasets to help increase the accuracy of the predictive map outputs. The modelling work has also been extended to cover all of Welsh waters (previously cut-off at the Interreg funding boundary), notably including the Dee and Severn estuaries. The purpose of this data capture was to provide seabed habitat maps that could be used for conservation and management. Project outputs might be used in strategic planning, decision making for offshore developments, Marine Protected Area selection, sensitivity mapping and mapping essential fish habitats. However, because of the way the has been produced, and the fact that some data has been modelled and derived, the maps are not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment without further supporting studies or evidence. The project boundaries were as follows: Southern Irish Sea- land-based boundaries include the whole Welsh coast to the English border on the east side of the Dee Estuary in the north, and the whole Severn Estuary and Bristol Channel coastline in the south, extending as far as Morte Point (east of Ifracombe) in England. The southern project boundary then extends offshore (skirting the northern tip of Lundy) across to a point approx 60km west of Waterford on the Irish coast, including the whole SE Ireland coastline and offshore banks as well as parts of the Celtic Sea. The boundary then extends northwards along the Irish coast to a point approximately 40 km north of Dublin. The outputs of the project included a Combined Level3/Level4 habitat map, presented here after translation to the EUNIS habitat classification system from the Marine Habitat Classification System for Britain and Ireland. Each polygon of the original output contained up to 46 different biotopes, either predicted by the model or recorded as present, and presented in order of likelihood. Only the primary biotope has been taken from the original dataset to produce this EUNIS output, polygons originally containing more than one habitat are flagged in the "VAL_COMM" field. Information on whether the biotope was recorded as present or was a predictive output of the model, and a confidence value present in the original dataset have also been recorded in the "VAL_COMM" field
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the Rural Urban Classification (2011) of the MSOAs in the South East Region. (File Size - 1 MB)
Facebook
TwitterThis service contains various Aquaculture data. This includes Shellfish Production, Optimum Sites of Aquaculture potential (AQ1), Bivalve Classification area and Areas of Future Potential for Aquaculture. ------------------------------------------------------------------------------------------------------------The Shellfish Production dataset shows shellfish farm species production data grouped by water body. Water bodies were taken from the water framework directive (WFD) coastal and transitional water bodies database, and joined with the data from CEFAS. Data contains information on species present and production values. This dataset was created by ABPmer under contract to DEFRA (Contract reference MB106). An Excel spreadsheet was supplied to ABPmer by CEFAS which contained a list of waterbodies with the species cultivated per waterbody, production per waterbody and the number of businesses operating for 2007. The production data was joined to a shapefile containing waterbodies based on name of waterbody, and all sites where no shellfish cultivation occurred were removed. The same procedure was repeated with the data of species present. A shapefile containing both number of species grown and tonnes produced per waterbody was created by merging the two datasets based on waterbody name. ------------------------------------------------------------------------------------------------------------The Optimum Sites of Aquaculture Potential (AQ1) dataset shows areas identified through GIS modelling of suitable environmental conditions in East Coast Inshore and Offshore Marine Plan Areas favourable for macroalgae culture, Bivalve Bottom Culture, Finfish Cage, Lobster Restocking, Rope Cultured Bivalve Shellfish or Trestle/Bag Culture of Bivalves. This dataset has been derived from of a wider study assessing aquaculture potential in the South and East Marine Plan Areas for the Marine Management Organisation, project MMO1040. It was created using the Natural Resource model which forms part of the MMO project 1040 Spatial Trends in Aquaculture Potential in the South and East Coast Inshore and Offshore Marine Plan Areas. The Natural Resource model is made up of three existing environmental datasets: bathymetry derived from the Department of Food and Rural Affairs (Defra) Digital Elevation Model (DEM), predicted seabed sediments and combined seabed energy, both from UKSeaMap 2010 (McBreen, et al., 2010). Suitable environmental conditions applied include - low-moderate seabed energy, any sediment type and 10-25 m water depth for current potential. The depth limitations in this instance are based on the industry current reliance on scuba-divers for maintenance and husbandry. It is anticipated that as the industry develops it will become less reliant on divers and be able to move into deeper waters. Note that although the Natural Resource model used the best environmental data available for use in the study but there are significant limitations and gaps. These are outlined below and are discussed in more detail in the final project report: The model does not contain any measure of water quality (e.g. dissolved oxygen, sediment loading or contaminants) and therefore is likely to overestimate the area deemed suitable for aquaculture developments, particularly fin fish cage culture, rope grown bivalve culture and macroalgae culture. The UKSeaMap 2010 predicted seabed sediment map (McBreen, et al., 2010) is modelled at a coarse scale which has led to inaccuracies in the identification of areas which have potential for aquaculture development. UKSeaMap 2010 is known to under-estimate rock habitats because of the type of sampling data (sediment grabs) used to underpin the model. The MMO is working with JNCC to develop these data to lead to improvements in future models. The UKSeaMap 2010 combined seabed energy map included in the model (McBreen, et al., 2010) provides an approximation of the environmental conditions that are likely to limit aquaculture development (e.g. strong currents and large waves) but more accurate results could be obtained by using more precise component datasets such as the maximum wave height and tidal current range, where these datasets are available and the precise limitations of the aquaculture activities of interest are known. The dataset shows potential based on current technologies as defined in Table 10 of the MMO1040 Aquaculture Potential Final Report which is published on the MMO website's evidence pages. ------------------------------------------------------------------------------------------------------------The Bivalve Classification dataset classifies where the production of shellfish can be commercially harvested. All areas listed are designated for species that may be harvested as well as the classification of the shellfish waters. Classification of harvesting areas is required and implemented directly in England and Wales under European Regulation 854/2004. The co-ordination of the shellfish harvesting area classification monitoring programme in England and Wales is carried out by the Centre for Environment, Fisheries and Aquaculture Science, Weymouth (Cefas) on behalf of the Food Standards Agency (FSA). Cefas will make recommendations on classification according to an agreed protocol with the FSA making all final classification decisions and setting out the overall policy. Shellfish production areas are classified according to the extent to which shellfish sampled from the area are contaminated with E. coli. The Classification Zones/Production areas delineate areas where shellfish may be commercially harvested. Coordinates for the zone boundaries are calculated during a sanitary (ground) survey of the production area and where appropriate they are based on the OS Mastermap Mean High Water Line (coordinate accuracy <10m). The maps/zones are correct at time of publication but are updated when necessary depending on hygiene testing results. The current maps (jpgs) are available from the Cefas website ( https://www.cefas.co.uk/publications-data/food-safety/classification-and-microbiological-monitoring/england-and-wales-classification-and-monitoring/classification-zone-maps ) or a listing is available from the FSA website ( http://www.food.gov.uk/enforcement/monitoring/shellfish/shellharvestareas ) ------------------------------------------------------------------------------------------------------------The Current Aquaculture Potential layer highlights areas identified through GIS modelling of suitable environmental conditions in the South and East Marine Plan Areas favourable for macroalgae culture, Bivalve Bottom Culture, Finfish Cage, Lobster Restocking, Rope Cultured Bivalve Shellfish or Trestle/Bag Culture of Bivalves in the South and East Coast Marine Plan Areas. This dataset forms part of a wider study assessing different aquaculture potential in the South and East Marine Plan Areas for the Marine Management Organisation, project MMO1040. This dataset was created using the Natural Resource model which forms part of the MMO project 1040 Spatial Trends in Aquaculture Potential in the South and East Coast Inshore and Offshore Marine Plan Areas. The Natural Resource model is made up of three existing environmental datasets: bathymetry derived from the Department of Food and Rural Affairs (Defra) Digital Elevation Model (DEM), predicted seabed sediments and combined seabed energy, both from UKSeaMap 2010 (McBreen, et al., 2010). Suitable environmental conditions applied include - low-moderate seabed energy, any sediment type, 10-25 m water depth for current potential and 25-50 m water depth for near future potential). The depth limitations in this instance are based on the industry current reliance on scuba-divers for maintenance and husbandry. It is anticipated that as the industry develops it will become less reliant on divers and be able to move into deeper waters. Note that although the Natural Resource model used the best environmental data available for use in the study, there are significant limitations and gaps. These are outlined below and are discussed in more detail in the final project report: The Natural Resource model does not contain any measure of water quality (e.g. dissolved oxygen, sediment loading or contaminants) and therefore is likely to overestimate the area deemed suitable for aquaculture developments, particularly fin fish cage culture, rope grown bivalve culture and macroalgae culture. The UKSeaMap 2010 predicted seabed sediment map (McBreen, et al., 2010) is modelled at a coarse scale which has led to inaccuracies in the identification of areas which have potential for aquaculture development. UKSeaMap 2010 is known to under-estimate rock habitats because of the type of sampling data (sediment grabs) used to underpin the model. It is recommended that this component of the model is supplemented or replaced by higher resolution sediment maps where they are available for the region of interest. The UKSeaMap 2010 combined seabed energy map included in the model (McBreen, et al., 2010) provides an approximation of the environmental conditions that are likely to limit aquaculture development (e.g. strong currents and large waves) but more accurate results could be obtained by using more precise component datasets such as the maximum wave height and tidal current range, where these datasets are available and the precise limitations of the aquaculture activities of interest are known. The potential for development for the feature is "Current" (0-5 years), "Near Future" (5-10 years) or "Future" (10-20 years), the definitions of which are presented in Table 13 within the main report.
Facebook
TwitterThis map was produced as part of the site selection process for the Greater Thames Estuary AoS.
It aimed to characterise the habitat features of the AoS, and to identify the areas of Annex I habitat present.
Original classification system: Marine Habitat Classification for Britain and Ireland
Survey Techniques: Sidescan sonars, Towed video, grabs and acoustic ground discrimination systems (AGDS) were used to determine the biotope
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is a spatial dataset that shows the level of confidence associated with the predicted distributions of broad-scale marine habitats (EUNIS Level 3 classifications) in the above dataset, using the MESH confidence assessment methodology.
The Holderness coast is a unique and diverse marine ecosystem, but it is sensitive to increasing infrastructure and development applications in the region. This broad-scale habitat map is an important addition to Natural England's evidence base and will help to guide our advice on marine and coastal development in the area. advice. It also likely to be a useful resource for developers during the planning process, particularly to guide where further survey efforts should be targeted, and may too be of interest to any other stakeholders working along the Holderness coast.
Yorkshire Coast: The nearshore area between Spurn Point and the area South of Flamborough Head, encompassing Smithic Sands and Holderness Inshore Marine Conservation Zone (MCZ), and parts of Flamborough and Filey Coast Special Protection Area (SPA), Flamborough Head Special Area of Conservation (SAC) and the Site of Special Scientific Interest (SSSI) and Humber Estuary SAC, SPA and SSSI
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The HABMAP project was set up in response to the need for better spatial awareness of habitat distributions in the Southern Irish Sea. This work produced habitat maps of the seabed using novel predictive modelling techniques. This dataset is related to the predictive modelling only. The HABMAP Extension Project has built on the methods developed during the original project, and has repeated the modelling work using higher resolution / improved input datasets to help increase the accuracy of the predictive map outputs. The modelling work has also been extended to cover all of Welsh waters (previously cut-off at the Interreg funding boundary), notably including the Dee and Severn estuaries. The purpose of this data capture was to provide seabed habitat maps that could be used for con servation and management. Project outputs might be used in strategic planning, decision making for offshore developments, Marine Protected Area selection, sensitivity mapping and mapping essential fish habitats. However, because of the way the has been produced, and the fact that some data has been modelled and derived, the maps are not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment without further supporting studies or evidence.
The project boundaries were as follows: Southern Irish Sea- land-based boundaries include the whole Welsh coast to the English border on the east side of the Dee Estuary in the north, and the whole Severn Estuary and Bristol Channel coastline in the south, extending as far as Morte Point (east of Ifracombe) in England. The southern project boundary then extends offshore (skirting the northern tip of Lundy) across to a point approx 60km west of Waterford on the Irish coast, including the whole SE Ireland coastline and offshore banks as well as parts of the Celtic Sea. The boundary then extends northwards along the Irish coast to a point approximately 40 km north of Dublin.
Facebook
TwitterA PDF map showing the output areas in the South East Region of England as at December 2011. (File Size - 29 MB)
Facebook
TwitterThis layer is deprecated.The generalised BGS geology data is now available in the ArcGIS Living Atlas hereGeneralised digital geological map data based on BGS's published poster maps of the UK (North and South). Bedrock related themes created by generalisation of 1:50 000 data to make the 2007 fifth edition Bedrock Geology map.
Superficial related themes digitised from 1977 first edition Quaternary map (North and South).
Many BGS geology maps are now available digitally. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000, 1:50 000 and 1:10 000 scale datasets for England, Wales and Scotland. Work continues to upgrade these.
The geological areas (or polygons) are labelled or attributed with a name (based on their lithostratographical, chronostratographical or lithodemic nomenclature) and their composition (rock type or lithology). This information is arranged in two themes: bedrock geology and superficial deposits. Faults and other linear features are available in a separate theme.
Geology maps are the foundation for many other types of earth science related maps and are of potential use to a wide range of customers.The original dataset can be found here.
Facebook
TwitterThis is a web map service (WMS) of Digital Surface Model (DSM) data in South West England at a 1m resolution. The DSM covers an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DSM includes the height of features on the bare earth such as buildings or vegetation (if present). The dataset is a part of outcomes from the Centre for Ecology & Hydrology South West (SW) Project.
Facebook
TwitterThis layer of the map based index (GeoIndex) shows the boundaries of the G-BASE (Geochemical Baseline Survey of the Environment) project mapping areas which are reported as geochemical atlases. The majority of atlases are for stream sediments, with data on stream waters and soils included when available. Separate stream sediment, soil and stream water atlases have been published for Wales. Wales and north of Humber-Trent are reported as hardcopy generally A3 sized publications. The Humber-Trent atlas is available as a pdf file on a CD-ROM. Atlases are available for Shetland, Orkney, South Orkney and Caithness, Sutherland, Hebrides, Great Glen, East Grampians, Argyll, Southern Scotland, Lake District, NE England, NW England and N Wales, Humber-Trent, Wales and West Midlands. Atlases are not available yet for the East Midlands, East Anglia, SE England and SW England.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This is a digital version of the paper based 1:1M scale Offshore Quaternary map, North and South sheets. Customers should be aware that, given the age of the paper based maps, the digital version is not quality assured and BGS can accept no liability for the information held on the digital map. In addition, published 1:250,000 Quaternary maps are available. These contain more detailed subdivision of the Quaternary succession. The original paper based map covers the UK Continental shelf. The paper map is symbolised using lithology and chronology. The lithological boundaries were compiled from the data published in the BGS 1:250,000 Quaternary Geology map series and from revised interpretation of core and borehole data. Core and borehole sites are commonly 5 to 20 km apart, thus the lithological divisions are generalised. The formations and sequences identified by BGS have been grouped into Quaternary age ranges. The geological codes assigned to the digital version of the map have been compiled using the key information held on the paper map. The LEX-ROCK style codes combine the lithology and chronology and have been subject to the standard BGS approval process.
Facebook
TwitterThis map shows the extents of the various datasets comprising the World Elevation services – Terrain and TopoBathy.Topography SourcesThe Le système d'information du territoire à Genève (SITG) 0.5 meters DTM covers metropolitan Grand Geneva region of France and Switzerland.The Amt für Geoinformation Basel-Landschaft 0.25 meters DTM covers Canton of Basel-Landschaft, Switzerland.The Amt für Geoinformation Solothurn 0.5 meters DTM covers Canton of Solothurn, Switzerland.The Aargauische Geografische Informationssystem (AGIS) 0.5 meters DTM covers Canton of Aargau, Switzerland.The Amt für Raumentwicklung, Kanton Zürich 0.5 meters DTM covers Canton of Zurich, Switzerland.Ayuntamiento de Madrid 1 meter DTM covers entire Madrid city, Spain.The Instituto Geográfico Nacional (IGN) 5 and 10 meters DTM covers entire Spain.The Environment Agency 2 meters DTM covers 70 % of England.The Natural Resources Wales 2 meters DTM covers 70 % of Wales.The Scottish Government 1 meter DTM covers partial areas of Scotland.The AHN Netherlands (AHN2) 3 meters* DTM covers entire Netherlands.The Geospatial Information Authority of Japan (GSI) 0.2 arc second (approx. 5 meters) DEM5A & DEM5B covers partial areas of Japan and 0.4 arc second (approx. 10 meters) DEM10B covers entire Japan. Fundamental Geospatial Data provided by GSI with Approval Number JYOU-SHI No.1239 2016.The Geoland 10 meters DTM covers entire Austria.City of Vienna 1 meter DTM covers entire Vienna city, Austria.Land Oberösterreich 0.5 meters DTM covers entire state of Upper Austria, Austria.Land Salzburg 5 meters DTM covers entire state of Salzburg, Austria.Land Vorarlberg 5 meters DTM covers entire state of Vorarlberg, Austria.Land Tyrol 5 meters DTM covers entire state of Tyrol, Austria.Land Carinthia 5 meters DTM covers entire state of Carinthia, Austria.The Estonian Land Board 1, 5 and 10 meters DTM’s covers entire Estonia.Land NRW 1 meter DTM covers entire state of Nordrhein-Westfalen, Germany.The Geodatastyrelsen DTM (approx. 3 meters* and 10 meters) dataset covers entire Denmark.The National Land Survey of Finland 3 meters* and 10 meters DTM covers partial areas of Finland and entire Finland respectively.The Norwegian Mapping Authority 10 m DTM covers entire Norway.The Ordnance Survey’s OS Terrain 50 (50 meters) dataset covers Great Britain.The Natural Resources Conservation Service (NRCS), USDA 1 meter dataset covers partial areas of the conterminous United States.The FEMA LiDAR DTM (approx. 3 meters) covers partial areas of the conterminous United States.The USGS 3D Elevation Program’s (3DEP) 1 meter dataset covers partial areas of the conterminous United States.The National Elevation Dataset (NED) 1/9 arc second (approx. 3 meters) dataset covers partial areas of the conterminous United States and small areas of Alaska.The National Elevation Dataset (NED) 1/3 arc second (approx. 10 meters) dataset covers the conterminous United States, Hawaii, partial Alaska, and Territorial Islands of the United States.The National Elevation Dataset (NED) 1 arc second (approx. 31 meters) dataset covers the conterminous United States, Hawaii, partial Alaska, Puerto Rico, Territorial Islands of the United States, Canada and Mexico.The National Elevation Dataset (NED) 2 arc second (approx. 62 meters) dataset covers the state of Alaska.WorldDEM4Ortho 0.8 arc second (approx. 24 meters) dataset from Airbus Defense and Space GmbH covers entire earth's land surface excluding the countries of Azerbaijan, DR Congo and Ukraine.The Shuttle Radar Topography Mission (SRTM) 1 arc second (approx. 31 meters) dataset from NASA covers all land areas between 60 degrees north and 56 degrees south except Australia (which is covered by DEM-S from Geoscience Australia).The Shuttle Radar Topography Mission (SRTM) 1 arc second (approx. 31 meters) DEM-S dataset from Geoscience Australia covers Australia.The Shuttle Radar Topography Mission (SRTM) 3 arc second (approx. 93 meters) dataset covers all land areas between 60 degrees north and 56 degrees south.The EarthEnv-DEM90 3 arc second (approx. 93 meters) dataset covers approx. 90% of globe.Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 7.5, 15 and 30 arc second (approx. 232, 464 and 928 meters) datasets cover global land areas.Bathymetry SourcesBureau of Ocean Energy Management (BOEM) 40 feet (approx. 12 meters) deepwater bathymetry grid covers northern Gulf of Mexico.NCEI NOAA's 1/9 arc second (approx. 3 meters) dataset covers Puerto Rico, U.S Virgin Islands and partial areas of eastern and western United States coast.NCEI NOAA's 1/3 arc second (approx. 10 meters) dataset covers partial areas of eastern and western United States coast.NCEI NOAA's 1 arc second (approx. 31 meters) dataset covers partial areas of northeastern United States coast.NCEI NOAA's 3 arc second (approx. 93 meters) dataset covers partial areas of northeastern United States coast.NOAA's U.S. Coastal Relief Model (CRM) 1 arc second (approx. 31 meters) covers Southern California Coast (Version 2).NOAA's U.S. Coastal Relief Model (CRM) 3 arc second (approx. 93 meters) covers United States Coast.Geoscience Australia’s Indian Ocean Bathymetry 150 meters covers MH370 flight search area (Phase 1).General Bathymetric Chart of the Oceans (GEBCO) 30 arc second (approx. 928 meters) dataset covers the entire globe (GEBCO 2014 version 20150318).* The original source data resampled to approx. 3 meters.** Bathymetry datasets are part of TopoBathy service only.Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.
Facebook
TwitterA new version of this dataset exists. To see the last version of the Antarctic Digital Database, have a look here: https://data.bas.ac.uk/collections/e74543c0-4c4e-4b41-aa33-5bb2f67df389/
Coastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with ''land'', ''ice shelf'', ''ice tongue'' or ''rumple'''' attribute. Covering all land and ice shelves south of 60S. Suitable for topographic mapping and analysis. High resolution versions of ADD data are suitable for scales larger than 1:1,000,000. The largest suitable scale is changeable and dependent on the region.
Major changes in v7.5 include updates to ice shelf fronts in the following regions: Seal Nunataks and Scar Inlet region, the Ronne-Filchner Ice Shelf, between the Brunt Ice Shelf and Riiser-Larsen Peninsula, the Shackleton and Conger ice shelves, and Crosson, Thwaites and Pine Island. Small areas of grounding line and ice coastlines were also updated in some of these regions as needed.
Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Coal resource maps for the whole of the UK have been produced by the British Geological Survey as a result of joint work with Department of Trade and Industry and the Coal Authority. The Coal Resources Map is a Map of Britain depicting the spatial extent of the principal coal resources. The map shows the areas where coal and lignite are present at the surface and also where coal is buried at depth beneath younger rocks. The maps are intended to be used for resource development, energy policy, strategic planning, land-use planning, the indication of hazard in mined areas, environment assessment and as a teaching aid. In addition to a general map of coal resources for Britain data also exists for the six inset maps: Scotland; North-East; North-West; East Pennines; Lancashire, North Wales and the West Midlands; South Wales, Forest of Dean and Bristol. Available as a paper map, flat or folded, from BGS Sales or as a pdf on a CD if requested.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The South Sandwich Trench was surveyed with a Kongsberg EM 124 gondola-mounted to the hull of the 225-foot DSSV Pressure Drop. The survey was conducted over the course of seven days – February 2-9, 2019. The data meet the requirements for IHO Special Order standards.
Facebook
TwitterMaps of rural areas in the south-east region (Census 2001).
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>