100+ datasets found
  1. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.

  2. h

    ARCHITRAVE [map visualization : data & software]

    • heidata.uni-heidelberg.de
    application/gzip, pdf
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch (2021). ARCHITRAVE [map visualization : data & software] [Dataset]. http://doi.org/10.11588/DATA/AT1QUR
    Explore at:
    pdf(241144), application/gzip(914689)Available download formats
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    heiDATA
    Authors
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QURhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QUR

    Time period covered
    1685 - 1723
    Area covered
    France, Paris, France, Italy, Versailles, France, Spain, Germany, Belgium, Netherlands, Poland
    Dataset funded by
    DFG-ANR
    Description

    The dataset includes cartographic visualization data and software designed, implemented, and published for the ARCHITRAVE research project website. The research focused on the edition, executed in German and French, of six travelogues by German travelers of the Baroque period who visited Paris and Versailles. The edited texts are published in the Textgrid repository. For all further information on the content and objectives of the research, please refer to the website (https://architrave.eu/) and given literature. Three visualizations were created for the website: the travel stops of five of the travelers on their way to Paris and Versailles the sites in Europe mentioned in the six travelogues the sites in Paris described by the six travelers The visualizations were implemented with Leaflet.js. The dataset contains scripts for data crunching processed geodata scripts for leaflet.js License README

  3. I

    Interactive Map Creation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Interactive Map Creation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/interactive-map-creation-tools-1418201
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $7.8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of location-based services (LBS) and geographic information systems (GIS) across industries like real estate, tourism, logistics, and urban planning is a major catalyst. Businesses are increasingly leveraging interactive maps to enhance customer engagement, improve operational efficiency, and gain valuable insights from geospatial data. Furthermore, advancements in mapping technologies, including the integration of AI and machine learning for improved data analysis and visualization, are contributing to market growth. The accessibility of user-friendly tools, coupled with the decreasing cost of cloud-based solutions, is also making interactive map creation more accessible to a wider range of users, from individuals to large corporations. However, the market also faces certain challenges. Data security and privacy concerns surrounding the use of location data are paramount. The need for specialized skills and expertise to effectively utilize advanced mapping technologies may also hinder broader adoption, particularly among smaller businesses. Competition among established players like Mapbox, ArcGIS StoryMaps, and Google, alongside emerging innovative solutions, necessitates constant innovation and differentiation. Nevertheless, the overall market outlook remains positive, with continued technological advancements and rising demand for data visualization expected to propel growth in the coming years. Specific market segmentation data, while unavailable, can be reasonably inferred from existing market trends, suggesting a strong dominance of enterprise-grade solutions, but with substantial growth expected from simpler, more user-friendly tools designed for individuals and small businesses.

  4. Data from: NDS: an interactive, web-based system to visualize urban...

    • tandf.figshare.com
    mp4
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Lan; Elizabeth Delmelle; Eric Delmelle (2023). NDS: an interactive, web-based system to visualize urban neighborhood dynamics in United States [Dataset]. http://doi.org/10.6084/m9.figshare.14484512.v1
    Explore at:
    mp4Available download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Yu Lan; Elizabeth Delmelle; Eric Delmelle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    NDS is an interactive, web-based system, for the visualization of multidimensional neighborhood dynamics across the 50 largest US Metropolitan Statistical Areas (MSAs) from 1980 to 2010 (http://neighborhooddynamics.dreamhosters.com). Four different visualization tools are developed: (1) an interactive time slider to show neighborhood classification changes for different years; (2) multiple interactive bar charts for each variables of each neighborhood; (3) an animated neighborhood’s trajectory and sequence cluster on a self-organizing map (SOM) output space; and (4) a synchronized visualization tool showing maps for four time stamps at once. The development of this interactive online platform for visualizing dynamics overcomes many of the challenges associated with communicating changes for multiple variables, across multiple time stamps, and for a large geographic area when relying upon static maps. The system enables users to select and dive into details on particular neighborhoods and explore their changes over time.

  5. H

    Example of Map Visualization with GIS tool stack in CyberGIS-Jupyter for...

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated May 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Young-Don Choi (2020). Example of Map Visualization with GIS tool stack in CyberGIS-Jupyter for Water (CJW) [Dataset]. https://beta.hydroshare.org/resource/6add6bee06bb4050bfe23e1081627614/
    Explore at:
    zip(128.3 MB)Available download formats
    Dataset updated
    May 14, 2020
    Dataset provided by
    HydroShare
    Authors
    Young-Don Choi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These is an examples to test Data Processing Kernel in CyberGIS-Jupyter for water. The 2_map_visualization folder is an example of an interactive map visualization which is the high-level visualization using PyViz tools as post-processing of environmental modeling. For this example, we used the following PyViz tools: - geopandas (https://geopandas.org/), cartopy (https://scitools.org.uk/cartopy/), geoviews (https://geoviews.org/), and holoviews (https://holoviews.org/)

  6. Tile Map for India by State/UTs

    • kaggle.com
    zip
    Updated Jul 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik Nandan Saha (2021). Tile Map for India by State/UTs [Dataset]. https://www.kaggle.com/kaushiknandansaha/tile-map-for-india-by-stateuts
    Explore at:
    zip(7791 bytes)Available download formats
    Dataset updated
    Jul 29, 2021
    Authors
    Kaushik Nandan Saha
    Area covered
    India
    Description

    This dataset can be used to create a Tile map for India in a Visualization Tool. Dataset was created by me while making a Visualization on Tableau.

  7. s

    GLOBE Tree Heights Web Map Service pts

    • geospatial.strategies.org
    Updated Nov 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Global Environmental Strategies (2020). GLOBE Tree Heights Web Map Service pts [Dataset]. https://geospatial.strategies.org/maps/a7e32e42fa874078b0580b9e27274659
    Explore at:
    Dataset updated
    Nov 7, 2020
    Dataset authored and provided by
    Institute for Global Environmental Strategies
    Area covered
    Earth
    Description

    GLOBE provides the ability to view and interact with data measured across the world. Select the visualization tool to map, graph, filter and export data that have been measured across GLOBE protocols since 1995. Currently the GLOBE Data Visualization Tool supports a subset of protocols. Additional Features and capabilities are continually being added.

  8. D

    Data Visualization Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Visualization Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/data-visualization-industry-14160
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global data visualization market, valued at $9.84 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 10.95% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing volume and complexity of data generated across various industries necessitates effective visualization tools for insightful analysis and decision-making. Furthermore, the rising adoption of cloud-based solutions offers scalability, accessibility, and cost-effectiveness, driving market growth. Advances in artificial intelligence (AI) and machine learning (ML) are integrating seamlessly with data visualization platforms, enhancing automation and predictive capabilities, further stimulating market demand. The BFSI (Banking, Financial Services, and Insurance) sector, along with IT and Telecommunications, are major adopters, leveraging data visualization for risk management, fraud detection, customer relationship management, and network optimization. However, challenges remain, including the need for skilled professionals to effectively utilize these tools and concerns regarding data security and privacy. The market segmentation reveals a strong presence of executive management and marketing departments across organizations, highlighting the strategic importance of data visualization in business operations. The market's competitive landscape is characterized by established players like SAS Institute, IBM, Microsoft, and Salesforce (Tableau), along with emerging innovative companies. This competition fosters innovation and drives down costs, making data visualization solutions more accessible to a broader range of businesses and organizations. Regional variations in market penetration are expected, with North America and Europe currently holding significant shares, but Asia Pacific is poised for substantial growth, driven by rapid digitalization and technological advancements in the region. The on-premise deployment mode still holds a considerable market share, though the cloud/on-demand segment is experiencing faster growth due to its inherent advantages. The ongoing trend towards self-service business intelligence (BI) tools is empowering end-users to access and analyze data independently, increasing the overall market demand for user-friendly and intuitive data visualization platforms. Future growth will depend on continued technological advancements, expanding applications across diverse industries, and addressing the existing challenges related to data skills gaps and security concerns. This report provides a comprehensive analysis of the Data Visualization Market, projecting robust growth from $XX Billion in 2025 to $YY Billion by 2033. It covers the period from 2019 to 2033, with a focus on the forecast period 2025-2033 and a base year of 2025. This in-depth study examines key market segments, competitive landscapes, and emerging trends influencing this rapidly evolving industry. The report is designed for executives, investors, and market analysts seeking actionable insights into the future of data visualization. Recent developments include: September 2022: KPI 360, an AI-driven solution that uses real-time data monitoring and prediction to assist manufacturing organizations in seeing various operational data sources through a single, comprehensive industrial intelligence dashboard that sets up in hours, was recently unveiled by SymphonyAI Industrial., January 2022: The most recent version of the IVAAP platform for ubiquitous subsurface visualization and analytics applications was released by INT, a top supplier of data visualization software. IVAAP allows exploring, visualizing, and computing energy data by providing full OSDU Data Platform compatibility. With the new edition, IVAAP's map-based search, data discovery, and data selection are expanded to include 3D seismic volume intersection, 2D seismic overlays, reservoir, and base map widgets for cloud-based visualization of all forms of energy data.. Key drivers for this market are: Cloud Deployment of Data Visualization Solutions, Increasing Need for Quick Decision Making. Potential restraints include: Lack of Tech Savvy and Skilled Workforce/Inability. Notable trends are: Retail Segment to Witness Significant Growth.

  9. w

    Global Interactive MAP Creation Tool Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Interactive MAP Creation Tool Market Research Report: By Application (Urban Planning, Environmental Monitoring, Tourism and Navigation, Event Management, Education), By Deployment Type (Cloud-Based, On-Premise, Hybrid), By Features (Real-Time Data Visualization, User Collaboration Tools, Mobile Accessibility, Customizable Templates), By End User (Government Entities, Educational Institutions, Corporate Sector, Non-Profit Organizations) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/interactive-map-creation-tool-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    North America, Europe, Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242397.5(USD Million)
    MARKET SIZE 20252538.9(USD Million)
    MARKET SIZE 20354500.0(USD Million)
    SEGMENTS COVEREDApplication, Deployment Type, Features, End User, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSRising demand for data visualization, Increasing adoption in education, Growth in location-based services, Advancements in GIS technology, Expansion of mobile mapping applications
    MARKET FORECAST UNITSUSD Million
    KEY COMPANIES PROFILEDIBM, Spatialite, Hexagon AB, Autodesk, Oracle, FME, QGIS, Safe Software, Carto, Pitney Bowes, HERE Technologies, Esri, Trimble, Mapbox, Microsoft, Alteryx
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESGrowing demand for visualization tools, Increased adoption in education sectors, Integration with real-time data, Expansion in remote work applications, Rising interest in tourism and travel
    COMPOUND ANNUAL GROWTH RATE (CAGR) 5.9% (2025 - 2035)
  10. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. d

    Development of Interactive Data Visualization Tool for the Predictive...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chan, Wai Chung Wilson (2023). Development of Interactive Data Visualization Tool for the Predictive Ecosystem Mapping Project [Dataset]. http://doi.org/10.5683/SP3/7RVB70
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Chan, Wai Chung Wilson
    Description

    Biogeoclimatic Ecosystem Classification (BEC) system is the ecosystem classification adopted in the forest management within British Columbia based on vegetation, soil, and climate characteristics whereas Site Series is the smallest unit of the system. The Ministry of Forests, Lands, Natural Resource Operations and Rural Development held under the Government of British Columbia (“the Ministry”) developed a web-based tool known as BEC Map for maintaining and sharing the information of the BEC system, but the Site Series information was not included in the tool due to its quantity and complexity. In order to allow users to explore and interact with the information, this project aimed to develop a web-based tool with high data quality and flexibility to users for the Site Series classes using the “Shiny” and “Leaflet” packages in R. The project started with data classification and pre-processing of the raster images and attribute tables through identification of client requirements, spatial database design and data cleaning. After data transformation was conducted, spatial relationships among these data were developed for code development. The code development included the setting-up of web map and interactive tools for facilitating user friendliness and flexibility. The codes were further tested and enhanced to meet the requirements of the Ministry. The web-based tool provided an efficient and effective platform to present the complicated Site Series features with the use of Web Mapping System (WMS) in map rendering. Four interactive tools were developed to allow users to examine and interact with the information. The study also found that the mode filter performed well in data preservation and noise minimization but suffered from long processing time and creation of tiny sliver polygons.

  12. s

    Visualization & Mind Maps Plugin Statistics

    • system3.md
    Updated Feb 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    System 3 (2025). Visualization & Mind Maps Plugin Statistics [Dataset]. https://system3.md/observatory/categories/visualization-mindmaps
    Explore at:
    Dataset updated
    Feb 9, 2025
    Dataset authored and provided by
    System 3
    Description

    Download statistics and trends for 141 plugins in the Visualization & Mind Maps category

  13. Global Customer Journey Mapping Software Market Size By Functionality...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2025). Global Customer Journey Mapping Software Market Size By Functionality (Mapping and Visualization Tools, Analysis and Reporting Tools, Integration Tools), By Development Mode (Cloud-Based, On-Premises), By Organization Size (Small and Medium-sized Enterprises, Large Enterprises), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/customer-journey-mapping-software-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Customer Journey Mapping Software Market size was valued to be USD 10.8 Billion in the year 2024 and it is expected to reach USD 53.6 Billion in 2032, at a CAGR of 13.8% over the forecast period of 2026 to 2032.

    Customer Journey Mapping (CJM) software is a specialist application that helps organizations see and analyze the various stages of a customer's interaction with a firm. This program delivers a full and comprehensive perspective of the customer experience from the first contact to the final encounter allowing businesses to optimize their operations and increase overall customer satisfaction

    . The essence of CJM software is its capacity to record and map out the customer journey in a visual manner such as a flowchart or diagram which aids in identifying pain points, understanding customer wants, and aligning business goals appropriately.

    The primary application of customer journey mapping software is to improve customer experience (CX). Understanding the various stages and touchpoints of the customer journey allows firms to discover pain points and areas for improvement. For example, if a customer journey map shows that consumers regularly abandon their shopping carts at the payment stage, the company can investigate and fix the problem whether by streamlining the checkout process, providing clearer instructions, or offering more payment options.

    CJMS will use advanced analytics to deliver more detailed insights into client behavior and preferences. The integration of big data and predictive analytics will enable organizations to anticipate client wants and identify possible problems before they arise. This proactive strategy will allow businesses to modify their services and interactions in real-time resulting in a smooth and rewarding consumer experience. Businesses will obtain a holistic picture of the consumer journey by analyzing massive volumes of data from multiple touchpoints revealing patterns and trends that can be used to guide strategic choices and optimize marketing efforts.

    Enhanced Attention to Customer Experience (CX): The importance of delivering superior customer experiences for sustaining brand loyalty and boosting revenue is increasingly acknowledged by businesses. The ability of customer journey mapping software to enable businesses to pinpoint and refine customer interaction points throughout their journey is leading to enhanced CX and competitive differentiation.

    Embracing Omnichannel Marketing: The engagement of modern consumers with brands through diverse platforms (including websites, social media, and mobile apps) is noted. The tracking of these multi-channel interactions and the understanding of customer behavior facilitated by customer journey mapping software assist in tailoring marketing efforts for better engagement.

    The Requirement for Insights Based on Data: The necessity for insights driven by data in comprehending customer behavior and preferences is recognized by businesses. Through the aggregation and examination of customer information from various sources, customer journey mapping software offers critical insights for augmenting customer engagement and loyalty.

    Regulatory Compliance Demands: Certain sectors are governed by regulations that enforce data privacy and security standards. Tools for meticulous tracking and management of customer information are provided by customer journey mapping software aiding businesses in meeting these regulatory requirements.

    Increased Utilization Among SMBs: The adoption of customer journey mapping software previously more common among larger corporations, is now expanding to Small and Medium Businesses (SMBs). The appeal of this technology to a broader business spectrum is being enhanced by cloud-based solutions and subscription models.

  14. B

    Business Mapping Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Business Mapping Software Report [Dataset]. https://www.archivemarketresearch.com/reports/business-mapping-software-56923
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Business Mapping Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions and the expanding need for data visualization across diverse industries. Our analysis projects a market size of $15 billion in 2025, expanding at a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant growth is fueled by several key factors. The rise of digital transformation initiatives across sectors like healthcare, finance, and manufacturing is creating a heightened demand for efficient data visualization tools. Businesses are increasingly relying on business mapping software to understand geographical patterns, optimize supply chains, analyze market trends, and improve operational efficiency. Furthermore, advancements in Artificial Intelligence (AI) and Machine Learning (ML) are enhancing the capabilities of these platforms, making them more insightful and user-friendly. The prevalence of cloud-based solutions offers scalability, accessibility, and cost-effectiveness, contributing significantly to market expansion. While data security concerns and the need for specialized training can act as restraints, the overall market outlook remains highly positive. The market segmentation highlights the strong demand across various application sectors. Healthcare is a particularly lucrative segment, leveraging the software for efficient resource allocation, patient management, and epidemiological studies. The automotive industry uses it for supply chain optimization and logistics management. Similarly, banking, financial services, and manufacturing benefit from improved risk assessment, market analysis, and operational optimization. The competitive landscape is dynamic, featuring both established tech giants like Microsoft and IBM, and specialized providers like Caliper and eSpatial. Geographic expansion, particularly in rapidly developing economies in Asia-Pacific, presents significant growth opportunities. This suggests the market will continue its upward trajectory, driven by technological advancements, increasing digitalization across industries, and a global demand for enhanced data visualization and analysis capabilities.

  15. d

    3D Maps

    • dataone.org
    Updated Aug 9, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Campbell, Karen (https://www.linkedin.com/in/karen-campbell-1336965); Morin, Paul (2016). 3D Maps [Dataset]. https://dataone.org/datasets/seadva-20ef8e4e-12fd-4244-be19-7a79c827e85f
    Explore at:
    Dataset updated
    Aug 9, 2016
    Dataset provided by
    SEAD Virtual Archive
    Authors
    Campbell, Karen (https://www.linkedin.com/in/karen-campbell-1336965); Morin, Paul
    Description

    NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.

    This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu

    Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.

    Maps are best when viewed with RED/CYAN anaglyph glasses!

    A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.

    World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.

    Continental United States: 3-D grayscale map of the Lower 48.

    Western United States: 3-D grayscale map of the Western United States with state boundaries.

    Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.

    Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.

    Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.

    Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.

    Minneapolis, MN: 3-D topographical map of South Minneapolis.

    Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.

    North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.

    St. Paul, MN: 3-D topographical map of St. Paul.

    Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.

    Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.

    Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.

    Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.

    Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.

    Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.

    Blaine, MN: 3-D map of Blaine and the Mississippi River.

    White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.

    Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.

  16. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Coal Oil Point, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  17. B

    Business Mapping Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Business Mapping Software Report [Dataset]. https://www.datainsightsmarket.com/reports/business-mapping-software-1969709
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Business Mapping Software market! Our in-depth analysis reveals a $15B market in 2025 projected to reach $45B by 2033, driven by cloud adoption and location intelligence. Explore market trends, key players (Microsoft, IBM, Caliper), and regional insights.

  18. 3

    3D Mapping and 3D Modeling Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). 3D Mapping and 3D Modeling Software Report [Dataset]. https://www.datainsightsmarket.com/reports/3d-mapping-and-3d-modeling-software-1453043
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming 3D mapping and modeling software market! Learn about key trends, leading companies like Autodesk & Bentley, and projected growth to $45B by 2033. Explore market analysis, regional insights, and future projections for BIM, digital twins, and more.

  19. d

    Data from: California State Waters Map Series--Offshore of Tomales Point Web...

    • datasets.ai
    • data.usgs.gov
    • +4more
    55
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). California State Waters Map Series--Offshore of Tomales Point Web Services [Dataset]. https://datasets.ai/datasets/california-state-waters-map-series-offshore-of-tomales-point-web-services
    Explore at:
    55Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Department of the Interior
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Tomales Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Tomales Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  20. w

    Global Knowledge Area Mapping MAP Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Knowledge Area Mapping MAP Market Research Report: By Application (Education, Healthcare, Business, Technology), By User Type (Students, Professionals, Educators, Researchers), By Deployment Model (On-Premises, Cloud-Based, Hybrid), By Features (Collaboration Tools, Data Visualization, Assessment Tools, Content Management) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/knowledge-area-mapping-map-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global, North America
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.55(USD Billion)
    MARKET SIZE 20252.73(USD Billion)
    MARKET SIZE 20355.5(USD Billion)
    SEGMENTS COVEREDApplication, User Type, Deployment Model, Features, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSTechnological advancement, Increasing demand for visualization, Growing focus on data-driven decision-making, Rising need for course customization, Emergence of remote learning tools
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDSisense, IBM, Domo, Oracle, Zoho, Infor, SAP, Microsoft, Tableau Software, Microsoft Power BI, Board International, TIBCO Software, Adobe, SAS Institute, Alteryx, Qlik
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for educational technology, Integration with AI-driven analytics, Customization for diverse industries, Expansion in remote learning solutions, Rising focus on skills-based training
    COMPOUND ANNUAL GROWTH RATE (CAGR) 7.2% (2025 - 2035)
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432

Interactive Map Creation Tools Report

Explore at:
pdf, ppt, docAvailable download formats
Dataset updated
Mar 15, 2025
Dataset authored and provided by
Market Research Forecast
License

https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.

Search
Clear search
Close search
Google apps
Main menu