The Tamalpais Lands Collaborative (One Tam; https://www.onetam.org/), the network of organizations that manage lands on Mount Tamalpais in Marin County, initiated the countywide mapping project with their interest in creating a seamless, comprehensive map depicting vegetation communities across the landscape. With support from their non-profit partner the Golden Gate National Parks Conservancy (https://www.parksconservancy.org/) One Tam was able to build a consortium to fund and implement the countywide fine scale vegetation map.Development of the Marin fine-scale vegetation map was managed by the Golden Gate National Parks Conservancy and staffed by personnel from Tukman Geospatial (https://tukmangeospatial.com/) Aerial Information Systems (AIS; http://www.aisgis.com/), and Kass Green and Associates. The fine-scale vegetation map effort included field surveys by a team of trained botanists. Data from these surveys, combined with older surveys from previous efforts, were analyzed by the California Native Plant Society (CNPS) Vegetation Program (https://www.cnps.org/vegetation) with support from the California Department of Fish and Wildlife Vegetation Classification and Mapping Program (VegCAMP; https://wildlife.ca.gov/Data/VegCAMP) to develop a Marin County-specific vegetation classification.High density lidar data was obtained countywide in the early winter of 2019 to support the project. The lidar point cloud, and many of its derivatives, were used extensively during the process of developing the fine-scale vegetation and habitat map. The lidar data was used in conjunction with optical data. Optical data used throughout the project included 6-inch resolution airborne 4-band imagery collected in the summer of 2018, as well as 6-inch imagery from 2014 and various dates of National Agriculture Imagery Program (NAIP) imagery.In 2019, a 26-class lifeform map was produced which serves as the foundation for the much more floristically detailed fine-scale vegetation and habitat map. The lifeform map was developed using expert systems rulesets in Trimble Ecognition®, followed by manual editing.In 2019, Tukman Geospatial staff and partners conducted countywide reconnaissance fieldwork to support fine-scale mapping. Field-collected data were used to train automated machine learning algorithms, which produced a fully automated countywide fine-scale vegetation and habitat map. Throughout 2020, AIS manually edited the fine-scale maps, and Tukman Geospatial and AIS went to the field for validation trips to inform and improve the manual editing process. In the spring of 2021, draft maps were distributed and reviewed by Marin County's community of land managers and by the funders of the project. Input from these groups was used to further refine the map. The countywide fine-scale vegetation map and related data products were made public in June 2021. In total, 107 vegetation classes were mapped with a minimum mapping size of one fifth to one acre, varying by class.Accuracy assessment plot data were collected in 2019, 2020, and 2021. Accuracy assessment results were compiled and analyzed in the summer of 2021. Overall accuracy of the lifeformmap is 95%. Overall accuracy of the fine-scale vegetation map is 77%, with an overall 'fuzzy' accuracy of 81%.The Marin County fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales. At its most floristically resolute scale, the fine-scale vegetation map depicts the landscape at the National Vegetation Classification alliance level - which characterizes stands of vegetation generally by the dominant species present. This product is useful to managers interested in specific information about vegetation composition. For those interested in general land use and land cover, the lifeform map may be more appropriate. Tomake the information contained in the map accessible to the most users, the vegetation map is published as a suite of GIS deliverables available in a number of formats. Map products are being made available wherever possible by the project stakeholders, including the regional data portal Pacific Veg Map (http://pacificvegmap.org/data-downloads).
The zoning map is a composite of zoning designations adopted as resolutions by the Marin County Board of Supervisors. Data extend over Assessor parcel boundaries in the unincorporated area of Marin County, California. The Zoning map denotes the spatial extent of land use designations defined in the Countywide Plan.
City is a topologically correct polygon representation of city boundaries as recorded in Marin County Assessor map pages. Coverage includes the entire jurisdiction of Marin County, California.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The zoning map is a composite of zoning designations adopted as resolutions by the Marin County Board of Supervisors. Data extend over Assessor parcel boundaries in the unincorporated area of Marin County, California. The Zoning map denotes the spatial extent of land use designations defined in the Countywide Plan.
CDFW BIOS GIS Dataset, Contact: Matt Sagues, Description: This is a vegetation map of the Marin County Open Space District Lands. It was produced in 2008 by Aerial Information Systems using hi-resolution (1') natural color imagery provided by the County of Marin, acquired by Vargis (date unknown).
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Park land areas in the County of Marin that are under the jurisdictions of: various agencies of the Federal Government, including the National Park Service; various agencies of the State of California, including State Parks; the County of Marin; Cities; Towns; School Districts and other.
Data is obtained from a specific park parcels map on MarinMap.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This shapefile contains tax rate area (TRA) boundaries in Marin County for the specified assessment roll year. Boundary alignment is based on the 2014 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dashboard & map shows schools & school status for public & private schools in Marin County. The Marin County of Education is the primary entity which updates the details of each school and its status though they may delegate that responsibility. The map is generally shown in an esri Dashboard and that Dashboard is often shown in an esri Experience Builder GIS application which includes additional public facing maps such as Evacuation, Power, Weather, etcContent is pushed from WebEOC's School Status board to the map via feature service.If you have questions or comments, please contact Woody Baker-Cohn in Marin County OEM at OEM_GIS@MarinCounty.gov
These data were created as part of the National Oceanic and Atmospheric Administration Coastal Services Center's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses.Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.csc.noaa.gov/slr These data depict the potential inundation of coastal areas resulting from a projected 1 to 6 feet rise in sea level above current Mean Higher High Water (MHHW) conditions. The process used to produce the data can be described as a modified bathtub approach that attempts to account for both local/regional tidal variability as well as hydrological connectivity. The process uses two source datasets to derive the final inundation rasters and polygons and accompanying low-lying polygons for each iteration of sea level rise: the Digital Elevation Model (DEM) of the area and a tidal surface model that represents spatial tidal variability. The tidal model is created using the NOAA National Geodetic Survey's VDATUM datum transformation software (http://vdatum.noaa.gov) in conjunction with spatial interpolation/extrapolation methods and represents the MHHW tidal datum in orthometric values (North American Vertical Datum of 1988). The model used to produce these data does not account for erosion, subsidence, or any future changes in an area's hydrodynamics. It is simply a method to derive data in order to visualize the potential scale, not exact location, of inundation from sea level rise.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Expansive Soils are defined as Maximum Measured Shrink-Swell Potential and were grouped by consultant Sean Wilson, geologist. Data originates from the NRCS Soils data known within the County of Marin GIS database as Soils. NRCS soils were downloaded from ftp://ftp.tfw.nrcs.usda.gov/pub/ssurgo/online98/data/ca041/ .
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This shapefile contains tax rate area (TRA) boundaries in Marin County for the specified assessment roll year. Boundary alignment is based on the 2014 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Drakes Bay map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic im... Visit https://dataone.org/datasets/45510361-914f-4ab3-9ae0-864c4462a2f6 for complete metadata about this dataset.
This dataset is intended for researchers, students, and policy makers for reference and mapping purposes, and may be used for basic applications such as viewing, querying, and map output production, or to provide a basemap to support graphical overlays and analysis with other spatial data.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Tomales Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and ... Visit https://dataone.org/datasets/55cbf4ba-e03a-4904-a101-2a38a96a08ed for complete metadata about this dataset.
The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). This release (sra10_2) represents the officially implemented SRA data resulting from the 2010 SRA review process, and includes all changes approved by the Board of Forestry and Fire Protection. The data are being released to the public and cooperators via the web. This dataset DOES NOT include changes we had hoped to make that involve tracking changes in federal ownership using county parcel data gathered and processed into a single statewide dataset (California Protected Areas Database) by GreenInfo Network. Efforts to utilize this data to track changes in federal ownership is ongoing.SRA data quality has been improved significantly due to sharing of parcel data by numerous local goverment agencies, and land ownership data from various federal agencies such as the BLM and Forest Service.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The General Plan map denotes the spatial extent of land use designations defined in the City of San Rafael General Plan. Data extend over Assessor parcel boundaries in City of San Rafael's Sphere of Influence.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Zoning map denotes the spatial extent of land use designations defined in the Town of San Anselmo Zoning Ordinance/Development Code. Data extend over Assessor parcel boundaries in Town of San Anselmo.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Reyes map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and ph... Visit https://dataone.org/datasets/4ea5faf6-34e2-40b3-a127-73a8dbc14580 for complete metadata about this dataset.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Bolinas map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photog... Visit https://dataone.org/datasets/0494aace-8c77-4962-81d7-cb4b4ffc8a33 for complete metadata about this dataset.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Trails data were created for the Marin Countywide Plan update. Data was compiled from various sources including: Digitized from Marin County's existing trails maps, data from Tomales Bay State Park, data from Bay Trail, data from Marin County Parks and Open Space, data from Marin Municipal Water District, and data from GGNRA. Accuracy of data may vary. Trails have been rectified when possible to orthophotography and checked for accuracy by David Hansen of Marin County Parks and Open Space. Areas with tree coverage are not orthorectified and will not be as accurate. There is still much clean up work to be done on this data. The attributes of ID are reflective of the original county trail mylar map legend where: 1 = Paved Path, Trail Proposed 2 = Paved Path, Trail Right of Way Secured 3 = Paved Path, Trail Open to Public 4 = Combined Use, Trail Proposed 5 = Combined Use, Trail Right of Way Secured 6 = Combined Use, Trail Open to Public 7 = Equestrian/Hiking, Trail Proposed 8 = Equestrian/Hiking, Trail Right of Way Secured 9 = Equestrian/Hiking, Trail Open to Public 10 = Hiking Only, Trail Proposed 11 = Hiking Only, Trail Right of Way Secured 12 = Hiking Only, Trail Open to Public 0 = Unknown, Data came from other source
The Tamalpais Lands Collaborative (One Tam; https://www.onetam.org/), the network of organizations that manage lands on Mount Tamalpais in Marin County, initiated the countywide mapping project with their interest in creating a seamless, comprehensive map depicting vegetation communities across the landscape. With support from their non-profit partner the Golden Gate National Parks Conservancy (https://www.parksconservancy.org/) One Tam was able to build a consortium to fund and implement the countywide fine scale vegetation map.Development of the Marin fine-scale vegetation map was managed by the Golden Gate National Parks Conservancy and staffed by personnel from Tukman Geospatial (https://tukmangeospatial.com/) Aerial Information Systems (AIS; http://www.aisgis.com/), and Kass Green and Associates. The fine-scale vegetation map effort included field surveys by a team of trained botanists. Data from these surveys, combined with older surveys from previous efforts, were analyzed by the California Native Plant Society (CNPS) Vegetation Program (https://www.cnps.org/vegetation) with support from the California Department of Fish and Wildlife Vegetation Classification and Mapping Program (VegCAMP; https://wildlife.ca.gov/Data/VegCAMP) to develop a Marin County-specific vegetation classification.High density lidar data was obtained countywide in the early winter of 2019 to support the project. The lidar point cloud, and many of its derivatives, were used extensively during the process of developing the fine-scale vegetation and habitat map. The lidar data was used in conjunction with optical data. Optical data used throughout the project included 6-inch resolution airborne 4-band imagery collected in the summer of 2018, as well as 6-inch imagery from 2014 and various dates of National Agriculture Imagery Program (NAIP) imagery.In 2019, a 26-class lifeform map was produced which serves as the foundation for the much more floristically detailed fine-scale vegetation and habitat map. The lifeform map was developed using expert systems rulesets in Trimble Ecognition®, followed by manual editing.In 2019, Tukman Geospatial staff and partners conducted countywide reconnaissance fieldwork to support fine-scale mapping. Field-collected data were used to train automated machine learning algorithms, which produced a fully automated countywide fine-scale vegetation and habitat map. Throughout 2020, AIS manually edited the fine-scale maps, and Tukman Geospatial and AIS went to the field for validation trips to inform and improve the manual editing process. In the spring of 2021, draft maps were distributed and reviewed by Marin County's community of land managers and by the funders of the project. Input from these groups was used to further refine the map. The countywide fine-scale vegetation map and related data products were made public in June 2021. In total, 107 vegetation classes were mapped with a minimum mapping size of one fifth to one acre, varying by class.Accuracy assessment plot data were collected in 2019, 2020, and 2021. Accuracy assessment results were compiled and analyzed in the summer of 2021. Overall accuracy of the lifeformmap is 95%. Overall accuracy of the fine-scale vegetation map is 77%, with an overall 'fuzzy' accuracy of 81%.The Marin County fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales. At its most floristically resolute scale, the fine-scale vegetation map depicts the landscape at the National Vegetation Classification alliance level - which characterizes stands of vegetation generally by the dominant species present. This product is useful to managers interested in specific information about vegetation composition. For those interested in general land use and land cover, the lifeform map may be more appropriate. Tomake the information contained in the map accessible to the most users, the vegetation map is published as a suite of GIS deliverables available in a number of formats. Map products are being made available wherever possible by the project stakeholders, including the regional data portal Pacific Veg Map (http://pacificvegmap.org/data-downloads).