This is a summary of the programs and services provided by VA in Massachusetts in fiscal year 2014.
The datasets introduced in Chapter 6 of my PhD thesis are below. See the thesis for more details. If you use any of these datasets for research purposes you should use the following citation in any resulting publications:
@phdthesis{MnihThesis, author = {Volodymyr Mnih}, title = {Machine Learning for Aerial Image Labeling}, school = {University of Toronto}, year = {2013} }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Massachusetts population by age. The dataset can be utilized to understand the age distribution and demographics of Massachusetts.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The official dataset contains a training set (137 images), a validation set (4 images), and a testing set (10 images)
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The FY2017 State Summaries provide an overview of benefits, services, demographics and population of Veterans analyzed by state.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Massachusetts population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Massachusetts across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Massachusetts was 7.14 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, Massachusetts population was 7.07 million, an increase of 0.63% compared to a population of 7.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Massachusetts increased by 773,673. In this period, the peak population was 7.14 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Massachusetts Population by Year. You can refer the same here
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The BG boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Whately town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Whately town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Whately town was 1,623, a 0.31% decrease year-by-year from 2021. Previously, in 2021, Whately town population was 1,628, an increase of 0.74% compared to a population of 1,616 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Whately town increased by 64. In this period, the peak population was 1,628 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Whately town Population by Year. You can refer the same here
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
"The datasets introduced in Chapter 6 of my PhD thesis are below. See the thesis for more details."
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
"The datasets introduced in Chapter 6 of my PhD thesis are below. See the thesis for more details."
This U.S. Geological Survey data release contains coastal wetland synthesis products for Massachusetts. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.These USGS datasets are mirrored from the published coastal wetlands datasets on USGS ScienceBase. To download data and metadata: Ackerman, K.V., Defne, Z., and Ganju, N.K., 2021, Geospatial characterization of salt marshes for Massachusetts: U.S. Geological Survey data release, https://doi.org/10.5066/P97E086F.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). Spatial data is georeferenced to the earth surface using the Transverse Mercator projected coordinate system and the North American Datum of 1983. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:6000.
This dataset includes shorelines from 167 years ranging from 1848 to 2014 within the Cape Cod Bay coastal region of Massachusetts. Shorelines were compiled from T-sheets and air-photos obtained from the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), and lidar obtained from the US Geological Survey (USGS). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the MA CZM Shoreline Change Project. Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts coast extracted from lidar data collected between 2010-2014. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management (MA CZM) and USGS historical shoreline data to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS). For publication purposes, the shoreline data for Massachusetts were organized by region in order match the extent of previously published uncertainty files used in shoreline change calculations.
The FY2016 State Summaries provide an overview of benefits, services, demographics and population of Veterans analyzed by state.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Douglas town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Douglas town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Douglas town was 9,153, a 0.92% increase year-by-year from 2021. Previously, in 2021, Douglas town population was 9,070, an increase of 0.86% compared to a population of 8,993 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Douglas town increased by 2,015. In this period, the peak population was 9,153 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Douglas town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Massachusetts. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Massachusetts, the median income for all workers aged 15 years and older, regardless of work hours, was $58,969 for males and $40,185 for females.
These income figures highlight a substantial gender-based income gap in Massachusetts. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the state of Massachusetts.
- Full-time workers, aged 15 years and older: In Massachusetts, among full-time, year-round workers aged 15 years and older, males earned a median income of $88,104, while females earned $72,929, leading to a 17% gender pay gap among full-time workers. This illustrates that women earn 83 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Massachusetts.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Massachusetts median household income by race. You can refer the same here
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. State Legislative Districts (SLDs) are the areas from which members are elected to State legislatures. The SLDs embody the upper (senate) and lower (house) chambers of the state legislature. Nebraska has a unicameral legislature and the District of Columbia has a single council, both of which the Census Bureau treats as upper-chamber legislative areas for the purpose of data presentation; there are no data by SLDL for either Nebraska or the District of Columbia. A unique three-character census code, identified by state participants, is assigned to each SLD within a state. In Connecticut, Illinois, Louisiana, New Hampshire, Wisconsin, and Puerto Rico, the Redistricting Data Program (RDP) participant did not define the SLDs to cover all of the state or state equivalent area. In these areas with no SLDs defined, the code "ZZZ" has been assigned, which is treated as a single SLD for purposes of data presentation. The most recent state legislative district boundaries collected by the Census Bureau are for the 2022 election year and were provided by state-level participants through the RDP.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Orange town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Orange town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Orange town was 7,558, a 0.18% decrease year-by-year from 2021. Previously, in 2021, Orange town population was 7,572, an increase of 0.12% compared to a population of 7,563 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Orange town increased by 42. In this period, the peak population was 7,849 in the year 2011. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Orange town Population by Year. You can refer the same here
This is a summary of the programs and services provided by VA in Massachusetts in fiscal year 2014.