https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about various Data Science and Analytics master's programs offered in the United States. It includes details such as the program name, university name, annual tuition fees, program duration, location of the university, and additional information about the programs.
Column Descriptions:
Subject Name:
The name or field of study of the master's program, such as Data Science, Data Analytics, or Applied Biostatistics.
University Name:
The name of the university offering the master's program.
Per Year Fees:
The tuition fees for the program, usually given in euros per year. For some programs, the fees may be listed as "full" or "full-time," indicating a lump sum for the entire program or for full-time enrollment, respectively.
About Program:
A brief description or overview of the master's program, providing insights into its curriculum, focus areas, and any unique features.
Program Duration:
The duration of the master's program, typically expressed in years or months.
University Location:
The location of the university where the program is offered, including the city and state.
Program Name:
The official name of the master's program, often indicating its degree type (e.g., M.Sc. for Master of Science) and format (e.g., full-time, part-time, online).
In 2023, ** percent of prospective graduate business students in the United States were interested in hybrid programs, an increase from ** percent in 2019. However, the overall preference in 2023 was for in-person business school programs, at ** percent.
A file that holds the master records for all online training courses nominated for reimbursement.
There are errors in this release due to a coding error. Please do not use figures reported in this publication for these countries:
We have correct data in the graduate outcomes (LEO): 2018 to 2019 publication and corrected the outcomes and earnings data for all previously reported tax years and graduating cohorts.
The longitudinal education outcomes (LEO) data includes:
This experimental release uses LEO data to look at employment and earnings outcomes of higher education graduates 1, 2, 5 and 10 years after graduation in the tax years 2014 to 2015 and 2015 to 2016.
The outcomes update previously published figures by including data for the 2015 to 2016 tax year. This publication also includes outcomes for EU and overseas students for the first time and extends the coverage to include those that studied first degrees in further education colleges.
Higher education statistics team (LEO)
Matthew Bridge
Department for Education
2 St. Paul's Place
125 Norfolk Street
Sheffield
S1 2FJ
Email mailto:he.leo@education.gov.uk">he.leo@education.gov.uk
Phone 07384 456648
Between 2015 and 2024, the number of bachelor's students who graduated from online universities in Italy steadily increased. In 2015, less than ***** people obtained their bachelor's from an online university. After nine years, the number of students more than doubled, reaching ****** graduates. In Italy, bachelor's students represented the largest group of e-learning university students, ******* people.
According to a 2023 survey, ** percent of undergraduate students who were studying online in the United States were White, while ** percent were Black or African-American. In comparison, ** percent of graduate students studying online in the United States in that year were White, while ** percent were Black or African American.
IntroductionThe assessment of student outcomes is essential for monitoring the quality of graduate programs in healthcare sciences. As such, this study focused on developing a self-employed questionnaire that allowed for the evaluation of elements focused on career impact and levels of satisfaction regarding graduate program education. Following, this instrument was utilized in a cross-sectional study design with alumni that had obtained their degree (MSc or PhD) over a 25-year span (1995–2020) from a graduate program in dentistry located in Brazil.MethodsThe employed instrument comprised a total of 43 questions presenting a mix of both close and open-ended questions coupled with 5-point Likert scales. The questionnaire was hosted online and a total of 528 alumni were invited to participate through e-mail and social media outreach.Results376 alumni answered the questionnaire (71.2% response rate). The majority were female (69.9%), and with a MSc (58.5%). Levels of satisfaction towards the program as well the impact in career and life were higher in alumni that had obtained a PhD degree compared to MSc. After obtaining the degree, an increase in involvement in teaching/research positions (3.4% vs 21.5%, p < 001) and a decrease in unemployment (21.9% vs 2.1%, p < 001) were observed. The highest levels of impact were observed regarding the achievement of the professional goals as nearly 90% of the population agreed with this statement.ConclusionsThis study highlighted the creation and employment of an assessment tool that can be utilized to monitor the perceptions of student outcomes. Among the findings, a decrease in unemployment and a high degree of career impact and satisfaction were observed in the population of this study. Moving forward, it is essential that monitoring educational outcomes remains a priority worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file set is the basis of a project in which Stephanie Pywell from The Open University Law School created and evaluated some online teaching materials – Fundamentals of Law (FoLs) – to fill a gap in the knowledge of graduate entrants to the Bachelor of Laws (LLB) programme. These students are granted exemption from the Level 1 law modules, from which they would normally acquire the basic knowledge of legal principles and methods that is essential to success in higher-level study. The materials consisted of 12 sessions of learning, each covering one key topic from a Level 1 law module.The dataset includes a Word document that consists of the text of a five-question, multiple-choice Moodle poll, together with the coding for each response option.The rest of the dataset consists of spreadsheets and outputs from SPSS and Excel showing the analyses that were conducted on the cleaned and anonymised data to ascertain students' use of, and views on, the teaching materials, and to explore any statistical association between students' studying of the materials and their academic success on Level 2 law modules, W202 and W203.Students were asked to complete the Moodle poll at the end of every session of study, of which there were 1,013. Only one answer from each of the 240 respondents was retained for Questions 3, 4 and 5, to avoid skewing the data. Some data are presented as percentages of the number of sessions studied; some are presented as percentages of the number of respondents, and some are presented as percentage of the number of respondents who meet specific criteria.Student identifiers, which have been removed to ensure anonymity, are as follows: Open University Computer User code (OUCU) and Personal Identifier (PI). These were used to collate the output from the Moodle poll with students' Level 2 module results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 data sets and associated Jupyter Hub notebooks are support for a manuscript describing how data science was shown to be effective in developing a transdisciplinary team and the production of novel outputs in part due to the common learning process of all team members being part of an online professional data science and analytics master’s degree program. This online curriculum helped the team members to find a common process that allowed them learn in common (Kläy, Zimmermann, & Schneider, 2015), transdisciplinary learning a key component of transdisciplinary teamwork (Yeung, 2015). Our team's Jupyter Hub files with complete coding and data set explanations are uploaded to document this teamwork and the outputs of the team.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates for National Statistics Socio-economic Classification (NS-SeC) by sex in Northern Ireland. The estimates are as at census day, 21 March 2021.
The census collected information on the usually resident population of Northern Ireland on census day (21 March 2021). Initial contact letters or questionnaire packs were delivered to every household and communal establishment, and residents were asked to complete online or return the questionnaire with information as correct on census day. Special arrangements were made to enumerate special groups such as students, members of the Travellers Community, HM Forces personnel etc. The Census Coverage Survey (an independent doorstep survey) followed between 12 May and 29 June 2021 and was used to adjust the census counts for under-enumeration.
The quality assurance report can be found here
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.
The study reported in this paper employed the mixed methods approach comprising a quantitative and qualitative analysis. The quantitative and econometric analysis of the dependent variable, namely, the final marks for the research report and the independent variables that explain it. The results show significance in terms of the assignments and existing knowledge marks in terms of their bachelor’s average mark. We extended the analysis to a qualitative and quantitative survey, which indicated that the mean statistical feedback was above average and therefore strongly agreed/agreed except for library use by the student. Students, therefore, need more guidance in terms of library use and the open questions showed a need for a research methods course in the future. Furthermore, supervision tends to be a significant determinant in all cases. It is also here where supervisors can use social media instruments such as WhatsApp and Facebook to inform students further. This study contributes as the first to investigate the preparation and research skills of students for master's and doctoral studies during the COVID-19 pandemic in an online environment.
The Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.
The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
Immigration statistics, year ending June 2020
Immigration Statistics Quarterly Release
Immigration Statistics User Guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/5f6cae16e90e077517f05a5f/asylum-summary-jun-2020-tables.xlsx">Asylum and resettlement summary tables, year ending June 2020 (MS Excel Spreadsheet, 121 KB)
Detailed asylum and resettlement datasets
https://assets.publishing.service.gov.uk/media/5f3bcb1fe90e0732d9008e25/sponsorship-summary-jun-2020-tables.xlsx">Sponsorship summary tables, year ending June 2020 (MS Excel Spreadsheet, 72.4 KB)
https://assets.publishing.service.gov.uk/media/5f3bcb678fa8f5173cc5f9ed/visas-summary-jun-2020-tables.xlsx">Entry clearance visas summary tables, year ending June 2020 (MS Excel Spreadsheet, 64.9 KB)
Detailed entry clearance visas datasets
https://assets.publishing.service.gov.uk/media/5f3bcbbae90e0732d9008e26/passenger-arrivals-admissions-summary-jun-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending June 2020 (MS Excel Spreadsheet, 76 KB)
Detailed Passengers initially refused entry at port datasets
https://assets.publishing.service.gov.uk/media/5f3bcbf18fa8f51747a88061/extentions-summary-jun-2020-tables.xlsx">Extensions summary tables, year ending June 2020 (MS Excel Spreadsheet, 42.9 KB)
<a href="https://www.gov.uk/government/statistical-data-sets/managed-
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This deidentified Excel qualitative data set contains graduate outcomes and graduates' views on the skills they acquired while completing the Women's Health Minor (WHM) at the University of Western Australia (UWA) between 2018 and 2023. Data showed that this self-selected sample of graduates (N=38) had acquired new and diverse skills while completing the WHM.
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.
According to an online survey conducted in February 2025 in the United States, ********* of LinkedIn users held a bachelor degree or equivalent. Additionally, ** percent of LinkedIn users in the U.S. held a masters degree or equivalent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data were collected through an online survey and processed to create 95% CI using the BCA bootstrap confidence interval algorithm in MS EXCEL. Construction of confidence interval in MS EXCEL using the BCA bootstrap confidence interval algorithm is earlier not presented in any studies. The macro capabilities of MS EXCEL was utilized for the purpose stated.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Flipped classroom models encourage student autonomy and reverse the order of traditional classroom content such as lectures and assignments. Virtual learning environments are ideal for executing flipped classroom models to improve critical thinking skills. This paper provides health professions faculty with guidance on developing a virtual flipped classroom in online graduate nutrition courses between September 2021 and January 2022 at the School of Health Professions, Rutgers The State University of New Jersey. Examples of pre-class, live virtual face-to-face, and post-class activities are provided. Active learning, immediate feedback, and enhanced student engagement in a flipped classroom may result in a more thorough synthesis of information, resulting in increased critical thinking skills. This article describes how a flipped classroom model design in graduate online courses that incorporate virtual face-to-face class sessions in a virtual learning environment can be utilized to promote critical thinking skills. Health professions faculty who teach online can apply the examples discussed to their online courses.
Table View of Master_OP_EXP - Budgets and Actuals from FY 2016, 2017, 2018, 2019, and FYTD 2020. This View is the data source for Expense Dashboards. Update Schedule: Once per Month.
This page contains data for the immigration system statistics up to March 2023.
For current immigration system data, visit ‘Immigration system statistics data tables’.
https://assets.publishing.service.gov.uk/media/64625e6894f6df0010f5eaab/asylum-applications-datasets-mar-2023.xlsx">Asylum applications, initial decisions and resettlement (MS Excel Spreadsheet, 9.13 MB)
Asy_D01: Asylum applications raised, by nationality, age, sex, UASC, applicant type, and location of application
Asy_D02: Outcomes of asylum applications at initial decision, and refugees resettled in the UK, by nationality, age, sex, applicant type, and UASC
This is not the latest data
https://assets.publishing.service.gov.uk/media/64625ec394f6df0010f5eaac/asylum-applications-awaiting-decision-datasets-mar-2023.xlsx">Asylum applications awaiting a decision (MS Excel Spreadsheet, 1.26 MB)
Asy_D03: Asylum applications awaiting an initial decision or further review, by nationality and applicant type
This is not the latest data
https://assets.publishing.service.gov.uk/media/62fa17698fa8f50b54374371/outcome-analysis-asylum-applications-datasets-jun-2022.xlsx">Outcome analysis of asylum applications (MS Excel Spreadsheet, 410 KB)
Asy_D04: The initial decision and final outcome of all asylum applications raised in a period, by nationality
This is not the latest data
https://assets.publishing.service.gov.uk/media/64625ef1427e41000cb437cb/age-disputes-datasets-mar-2023.xlsx">Age disputes (MS Excel Spreadsheet, 178 KB)
Asy_D05: Age disputes raised and outcomes of age disputes
This is not the latest data
https://assets.publishing.service.gov.uk/media/64625f0ca09dfc000c3c17cf/asylum-appeals-lodged-datasets-mar-2023.xlsx">Asylum appeals lodged and determined (MS Excel Spreadsheet, 817 KB)
Asy_D06: Asylum appeals raised at the First-Tier Tribunal, by nationality and sex
Asy_D07: Outcomes of asylum appeals raised at the First-Tier Tribunal, by nationality and sex
This is not the latest data
https://assets.publishing.service.gov.uk/media/64625f29427e41000cb437cd/asylum-claims-certified-section-94-datasets-mar-2023.xlsx"> Asylum claims certified under Section 94 (MS Excel Spreadsheet, 150 KB)
Asy_D08: Initial decisions on asylum applications certified under Section 94, by nationality
This is not the latest data
https://assets.publishing.service.gov.uk/media/6463a618d3231e000c32da99/asylum-seekers-receipt-support-datasets-mar-2023.xlsx">Asylum seekers in receipt of support (MS Excel Spreadsheet, 2.16 MB)
Asy_D09: Asylum seekers in receipt of support at end of period, by nationality, support type, accommodation type, and UK region
This is not the latest data
https://assets.publishing.service.gov.uk/media/63ecd7388fa8f5612a396c40/applications-section-95-support-datasets-dec-2022.xlsx">Applications for section 95 su
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about various Data Science and Analytics master's programs offered in the United States. It includes details such as the program name, university name, annual tuition fees, program duration, location of the university, and additional information about the programs.
Column Descriptions:
Subject Name:
The name or field of study of the master's program, such as Data Science, Data Analytics, or Applied Biostatistics.
University Name:
The name of the university offering the master's program.
Per Year Fees:
The tuition fees for the program, usually given in euros per year. For some programs, the fees may be listed as "full" or "full-time," indicating a lump sum for the entire program or for full-time enrollment, respectively.
About Program:
A brief description or overview of the master's program, providing insights into its curriculum, focus areas, and any unique features.
Program Duration:
The duration of the master's program, typically expressed in years or months.
University Location:
The location of the university where the program is offered, including the city and state.
Program Name:
The official name of the master's program, often indicating its degree type (e.g., M.Sc. for Master of Science) and format (e.g., full-time, part-time, online).