47 datasets found
  1. a

    Shoreline Management Master Program / shorelinemmp area

    • gis-kingcounty.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 18, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2003). Shoreline Management Master Program / shorelinemmp area [Dataset]. https://gis-kingcounty.opendata.arcgis.com/maps/shoreline-management-master-program-shorelinemmp-area
    Explore at:
    Dataset updated
    Sep 18, 2003
    Dataset authored and provided by
    King County
    Area covered
    Description

    K.C. Shoreline Management Master Program. Related to SAO wetlands and FEMA floodpln (has boolean attributes floodpln and wetlands).

  2. d

    Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI, MACA, RHOD digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Klemic (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-rhoda-quadrangle-kentucky-nps-grd-gri-maca-rhod-digital-ma
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Kentucky
    Description

    The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts (NPS, GRD, GRI, MIMA, mima_bedrock digital map) adapted from a Boston College Master's Thesis map by Langford and Hepburn (2007), a U.S. Geological Survey Bulletin map by Hansen (1956) and a U.S. Geological Survey Open-File Report map by Stone and Stone (2006) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-minuteman-national-historical-site-and-vicinity-massac
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Boston, Massachusetts
    Description

    The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. a

    Shoreline Master Program (SMP) Environment Designations / smp designations...

    • king-snocoplanning.opendata.arcgis.com
    • gis-kingcounty.opendata.arcgis.com
    Updated May 9, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2007). Shoreline Master Program (SMP) Environment Designations / smp designations area [Dataset]. https://king-snocoplanning.opendata.arcgis.com/maps/kingcounty::shoreline-master-program-smp-environment-designations-smp-designations-area
    Explore at:
    Dataset updated
    May 9, 2007
    Dataset authored and provided by
    King County
    Area covered
    Description

    SMP Environment Designations

  5. Digital Geologic-GIS Map of Glacier National Park, Montana (NPS, GRD, GRI,...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Glacier National Park, Montana (NPS, GRD, GRI, GLAC, GLAC digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Whipple (1992) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-glacier-national-park-montana-nps-grd-gri-glac-glac-digital-ma
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Montana
    Description

    The Digital Geologic-GIS Map of Glacier National Park, Montana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (glac_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (glac_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (glac_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (glac_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (glac_geology_metadata_faq.pdf). Please read the glac_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (glac_geology_metadata.txt or glac_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. p

    UniGR - cross-border study programme: Erasmus Mundus Master in Language and...

    • data.public.lu
    • geocatalogue.geoportail.lu
    • +1more
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire (2025). UniGR - cross-border study programme: Erasmus Mundus Master in Language and Communication Technologies (MA) [Dataset]. https://data.public.lu/en/datasets/unigr-cross-border-study-programme-erasmus-mundus-master-in-language-and-communication-technologies-ma/
    Explore at:
    application/geopackage+sqlite3(90112), application/geo+json(1633), zip(1566)Available download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    UniGR cross-border study programme: Erasmus Mundus Master in Language and Communication Technologies (MA) Source: UniGR Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2240&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/5a4afa26-fa3b-4557-88d5-be6353bd321c This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Crossborder_programmes_humanities_arts_2023_WMS/guest with layer name(s): -UniGR_Erasmus_Mundus_Master_MA

  7. r

    GIS database of archaeological remains on Samoa

    • researchdata.se
    • demo.researchdata.se
    • +1more
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olof Håkansson (2023). GIS database of archaeological remains on Samoa [Dataset]. http://doi.org/10.5878/003012
    Explore at:
    (10994657)Available download formats
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Uppsala University
    Authors
    Olof Håkansson
    Area covered
    Samoa
    Description

    Data set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.

    Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472

    Purpose:

    The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.

    Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia

  8. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  9. m

    Supplementary Datasets

    • data.mendeley.com
    Updated Mar 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natalia Novoselova (2020). Supplementary Datasets [Dataset]. http://doi.org/10.17632/8s3fps4vvb.2
    Explore at:
    Dataset updated
    Mar 17, 2020
    Authors
    Natalia Novoselova
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The shared archived combined in Supplementary Datasets represent the actual databases used in the investigation considered in two papers:

    Meteorological conditions affecting black vulture (Coragyps atratus) soaring behavior in the southeast of Brazil: Implications for bird strike abatement (in submission)

    Remote sensing applications for abating the aircraft-bird strike risks in the southeast of Brazil (Human-Wildlife Interactions Journal, in print)

    The papers were based on my Master’s thesis defended in 2016 in the Institute of Biology of the University of Campinas (UNICAMP) in partial fulfilment of the requirements for the degree of Master in Ecology. Our investigation was devoted to reducing the risk of aircraft collision with Black vultures. It had two parts considered in these two papers. In the first one we studied the relationship between soaring activity of Black vultures and meteorological characteristics. In the second one we explored the dependence of soaring activity of vultures on superficial and anthropogenic characteristics. The study was implemented within surroundings of two airports in the southeast of Brazil taken as case studies. We developed the methodological approaches combining application of GIS and remote sensing technologies for data processing, which were used as the main research instrument. By dint of them we joined in the georeferenced databases (shapefiles) the data of bird's observation and three types of environmental factors: (i) meteorological characteristics collected together with the bird’s observation, (ii) superficial parameters (relief and surface temperature) obtained from the products of ASTER imagery; (iii) parameters of surface covering and anthropogenic pressure obtained from the satellite images of high resolution. Based on the analyses of the georeferenced databases, the relationship between soaring activity of vultures and environmental factors was studied; the behavioral patterns of vultures in soaring flight were revealed; the landscape types highly attractive for this species and forming the increased concentration of birds over them were detected; the maps giving a numerical estimation of hazard of bird strike events over the airport vicinities were constructed; the practical recommendations devoted to decrease the risk of collisions with vultures and other bird species were formulated.

    This archive contains all materials elaborated and used for the study, including the GIS database for two papers, remote sensing data, and Microsoft Excel datasets. You can find the description of supplementary files in the Description of Supplementary Dataset.docx. The links on supplementary files and their attribution to the text of papers are considered in the Attribution to the text of papers.docx. The supplementary files are in the folders Datasets, GIS_others, GIS_Raster, GIS_Shape.

    For any question please write me on this email: natalieenov@gmail.com

    Natalia Novoselova

  10. p

    UniGR - cross-border study programme: Trinational Master in Literary,...

    • data.public.lu
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire (2025). UniGR - cross-border study programme: Trinational Master in Literary, Cultural and Linguistic History of the German-Speaking World (MA) [Dataset]. https://data.public.lu/en/datasets/unigr-cross-border-study-programme-trinational-master-in-literary-cultural-and-linguistic-history-of-the-german-speaking-world-ma/
    Explore at:
    application/geopackage+sqlite3(90112), application/geo+json(2986), zip(1874)Available download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    UniGR cross-border study programme: Trinational Master in Literary, Cultural and Linguistic History of the German-Speaking World (MA) Source: UniGR Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2239&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/0dda1840-f3d3-4aac-88dc-d7cd978d6b55 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Crossborder_programmes_humanities_arts_2023_WMS/guest with layer name(s): -UniGR_Trinational_Master_MA

  11. f

    PERM cases by degree level

    • froghire.ai
    Updated Apr 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). PERM cases by degree level [Dataset]. https://www.froghire.ai/major/Geographical%20Information%20Systems%20Gis
    Explore at:
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    FrogHire.ai
    Description

    This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geographical Information Systems Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geographical Information Systems Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.

  12. f

    PERM cases by degree level

    • froghire.ai
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). PERM cases by degree level [Dataset]. https://www.froghire.ai/major/Masters%20Of%20Science%20In%20Gis%20Technology
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    FrogHire.ai
    Description

    This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Masters Of Science In Gis Technology. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Masters Of Science In Gis Technology. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.

  13. GIS Programming course: Quiz and home assignment self assessments

    • figshare.com
    xlsx
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hartwig Hochmair (2025). GIS Programming course: Quiz and home assignment self assessments [Dataset]. http://doi.org/10.6084/m9.figshare.28551017.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Hartwig Hochmair
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains two Microsoft Excel documents:A quiz with eight questions, assigned to students in a graduate-level GIS programming course as part of Homework Assignment 2. The quiz assesses students' understanding of basic Python programming principles (such as loops and conditional statements).An Excel document with three worksheets, each corresponding to one homework assignment from the same graduate GIS programming course. The document includes self-reported background information (e.g., students' prior programming experience), details about the use of various resources (e.g., websites) for completing assignments, the perceived helpfulness of these resources, and scores for the homework assignments and quizzes.

  14. p

    UniGR - cross-border study programme: AMASE - Erasmus Mundus Master in...

    • data.public.lu
    • data.europa.eu
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire (2025). UniGR - cross-border study programme: AMASE - Erasmus Mundus Master in Advanced Material Science and Engineering (M.Sc.) [Dataset]. https://data.public.lu/en/datasets/unigr-cross-border-study-programme-amase-erasmus-mundus-master-in-advanced-material-science-and-engineering-m-sc/
    Explore at:
    application/geopackage+sqlite3(90112), application/geo+json(1935), zip(1535)Available download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    SIG-GR @ Ministère du Logement et de l'Aménagement du territoire - Département de l’aménagement du territoire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    UniGR cross-border study programme: AMASE - Erasmus Mundus Master in Advanced Material Science and Engineering (M.Sc.) Source: UniGR Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2249&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/7542c173-d6fb-4ffd-82d3-923a3bdf6552 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Cross_border_programmes_engineering_manufacturing_constructing_2023_WMS/guest with layer name(s): -UniGR_AMASE_MSc

  15. a

    Shoreline Master Program Open Data

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2022). Shoreline Master Program Open Data [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/shoreline-master-program-open-data
    Explore at:
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    Pend Oreille County Shoreline Master Program Designations

  16. Licensed Narcotic Treatment Programs

    • data.ca.gov
    • gis.data.ca.gov
    • +6more
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). Licensed Narcotic Treatment Programs [Dataset]. https://data.ca.gov/dataset/licensed-narcotic-treatment-programs
    Explore at:
    html, arcgis geoservices rest api, csv, kml, geojson, docx, zipAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Narcotic Treatment Program Master List contains a list of all state-licensed and certified narcotic treatment programs. The Master List contains vital information for each program listed and additional details, such as the program’s address and contact information, total capacity, hours of operation and program director and medical director.

  17. a

    Puyallup Shoreline Master Program Environments

    • gis-portal-puyallup.opendata.arcgis.com
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Puyallup (2020). Puyallup Shoreline Master Program Environments [Dataset]. https://gis-portal-puyallup.opendata.arcgis.com/datasets/puyallup::puyallup-shoreline-master-program-environments
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    City of Puyallup
    Area covered
    Description

    Abstract:  This dataset 'approximately' represents the location of the SMP 200 foot shoreline environments of the Puyallup River and Clarks Creek within the City of Puyallup and its urban growth area.Purpose: This feature class is to be used to 'approximately' locate the 200 foot shoreline environment from the ordinary high water mark (OHWM) of the Puyallup River and Clarks Creek. The shoreline environments were created using the Clarks Creek centerline shapefile and Puyallup River polygon shapefile. Because this map was created using the afore mentioned sources (as apposed to the OHWM as required by the SMP), the shoreline evnironments shown here will extend further upland than depicted. As such these shoreline environments should be used as a reference only. Reports and field work conducted by qualified professional biologists are required to determine the true location of the OHWM/200 foot shoreline environment for any property along these waterways. NOTE: The puy_river.shp is a polygon shapefile which extends close to the shoreline but does not mark the OHWM of the river. The clarks_creek_cntr_ln.shp is a line feature class that does not come close to the shoreline of Clarks Creek. The shoreline, not the OHWM, can be anywhere from 20-30 feet on either side of the center line. For these reasons it is imperative to have a biologist establish the OHWM for Clarks Creek and the Puyallup River. Only then can the 200 foot shoreline environment be determined.

  18. f

    PERM cases by degree level

    • froghire.ai
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). PERM cases by degree level [Dataset]. https://www.froghire.ai/major/Geography%20With%20Concentration%20In%20Gis
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    FrogHire.ai
    Description

    This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geography With Concentration In Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geography With Concentration In Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.

  19. Shoreline Mapping Program of Nantucket Island, MA, MA1601B-TB-C

    • fisheries.noaa.gov
    • catalog.data.gov
    Updated Jan 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Geodetic Survey (2020). Shoreline Mapping Program of Nantucket Island, MA, MA1601B-TB-C [Dataset]. https://www.fisheries.noaa.gov/inport/item/61603
    Explore at:
    pdf - adobe portable document formatAvailable download formats
    Dataset updated
    Jan 1, 2020
    Dataset provided by
    U.S. National Geodetic Survey
    Time period covered
    Oct 30, 2016 - Nov 23, 2016
    Area covered
    Description

    These data provide an accurate high-resolution shoreline compiled from lidar and imagery of Nantucket Island, MA . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartographic Object...

  20. a

    Penn State Geodesign Masters Degree Capstone Projects

    • penn-state-geodesign-geodesignpsu.hub.arcgis.com
    Updated Feb 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dmeehan_PSU (2018). Penn State Geodesign Masters Degree Capstone Projects [Dataset]. https://penn-state-geodesign-geodesignpsu.hub.arcgis.com/datasets/b00dffeb61784e78af50b7306dd48f3d
    Explore at:
    Dataset updated
    Feb 5, 2018
    Dataset authored and provided by
    dmeehan_PSU
    Description

    This application is a list of capstone projects for students in the Penn State Geodesign Masters in Professional Studies program.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
King County (2003). Shoreline Management Master Program / shorelinemmp area [Dataset]. https://gis-kingcounty.opendata.arcgis.com/maps/shoreline-management-master-program-shorelinemmp-area

Shoreline Management Master Program / shorelinemmp area

Explore at:
Dataset updated
Sep 18, 2003
Dataset authored and provided by
King County
Area covered
Description

K.C. Shoreline Management Master Program. Related to SAO wetlands and FEMA floodpln (has boolean attributes floodpln and wetlands).

Search
Clear search
Close search
Google apps
Main menu