4 datasets found
  1. a

    High School Graduate Count

    • hub.arcgis.com
    • gis.data.alaska.gov
    • +1more
    Updated Sep 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Commerce, Community, & Economic Development (2019). High School Graduate Count [Dataset]. https://hub.arcgis.com/maps/DCCED::high-school-graduate-count
    Explore at:
    Dataset updated
    Sep 5, 2019
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    Description

    Count of high school graduates for each public school in Alaska. Data covers the School Year 2013 to the present. Each year's count includes students graduating at any point during the school year (July 1 to June 30).Source: Alaska Department of Education & Early Development

    This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.

  2. Datasets (raw) used for MSc Thesis

    • figshare.com
    application/x-rar
    Updated Apr 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yannis Paraskevopoulos (2021). Datasets (raw) used for MSc Thesis [Dataset]. http://doi.org/10.6084/m9.figshare.14237705.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Apr 18, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yannis Paraskevopoulos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data used in MSc Thesis. Available for reproducing methodology

  3. Data from: AMPHIBIAN CONSERVATION IN AN URBAN PARK: A spatial approach to...

    • zenodo.org
    bin, csv, pdf
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zishan Cassiem Ebrahim; Zishan Cassiem Ebrahim (2024). AMPHIBIAN CONSERVATION IN AN URBAN PARK: A spatial approach to quantifying threats to Anura on the Cape peninsula [Dataset]. http://doi.org/10.5281/zenodo.4740260
    Explore at:
    bin, csv, pdfAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Zishan Cassiem Ebrahim; Zishan Cassiem Ebrahim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cape Peninsula
    Description

    Species' threat assessments produce generalized threat impact scores, often by considering regional-scale representations of threats. Cities, on the other hand, produce municipal-scale, high resolution data that are proxies for threats; furthermore, cities in mega-diverse regions are home to a high number of threatened species. Prioritization of conservation action is biased for where more information is known (about the ecosystem), and where a positive outcome can be anticipated. Eight Cape peninsula amphibian species have a threatened conservation status. They are isolated on highlands or are restricted to remnant and suburban habitats, dependent on both urban and protected terrestrial and freshwater habitats found in the City of Cape Town and Table Mountain National Park.

    In Chapter Two, I used spatial data (shapefiles) to represent threats in a Geographic Information System to spatially define threats to eight amphibian species (five lowland, three upland). I used two approaches: weighted and un-weighted by a threat impact-score, to produce five indices of local threats. The Micro Frog (Microbatrachella capensis) is assessed as the most threatened peninsula frog species by three of the five indices considered. The results show that for lowland species, the threat-class of greatest extent is 'Residential and commercial development'. The three lowland species most exposed to this threat are M. capensis (100% exposed to potential development), Breviceps gibbosus (55.6% of its 8.5 km2 putative peninsula distribution), and Sclerophrys pantherina (38.4% of its 199.7 km2 distribution). The Compounded and the General Threat Index correlate to the (global) Redlist Index (P < 0.05); but no correlation to the regional Red Listing, indicating congruency of threats and threat status.

    The Critically Endangered Table Mountain Ghost Frog (Heleophryne rosei) is torrent adapted, and found only on the Table Mountain massif. CapeNature monitors tadpoles, and SANParks monitors (selected) stream parameters. In Chapter Three, I analyse water-habitat monitoring data (controlled for altitude) to show where threats of habitat alteration, drought, or temperature extremes may affect the H. rosei metapopulation. Permanence of water-flow and water temperature are shown to be very highly significant predictors of tadpole presence (p = 0.0005, r = 0.78). The lower the water temperature, the more likely tadpoles are present. Streams with a mean summer temperature greater than 17.2°C (n=3) at 400 to 300 meters above sea level were found to have no tadpoles at this altitude. Permanence of water flow is significant, as tadpoles need more than one year to reach metamorphosis. Summer water temperatures over an average of 17.2°C should be a red-flag for management authorities responsible for bulk-water supply, threat mitigation efforts, and biodiversity conservation.

    Spatial indices of threat are useful to illustrate the relative exposure to threats at a local (city) scale. Threats to different lowland amphibians are similar (e.g. residential and commercial development), which varies from the mutual threats to different upland amphibians. Fundamental to stream species' conservation is water supply and demand management, while upland terrestrial species are most affected by veld age and invasive alien flora. Some threats are common for both areas (e.g. invasive alien species).

  4. a

    College Map

    • hub.arcgis.com
    • catalog.data.gov
    Updated Mar 15, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (2017). College Map [Dataset]. https://hub.arcgis.com/items/54c1339972ad4b1eb347047c7ca3e616
    Explore at:
    Dataset updated
    Mar 15, 2017
    Dataset authored and provided by
    National Center for Education Statistics
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Finding Schools is now easier than ever with the College Map, the first geographic search tool published by IPEDS (Integrated Postsecondary Education Data System) providing access to over 7,000 certificate, undergraduate and graduate-level schools. This all-in-one tool enables students, parents and counselors to filter potential programs for location, major, tuition and more. Including both certificate-level programs and advanced degrees, this public application makes the often overwhelming process of school searching simple, and it’s available on mobile devices.Once the results are narrowed down, users can share their lists on social media or download in excel format. Additionally, the College Map integrates with the College Navigator, a research based search tool providing data from the complete list of IPEDS Survey indicators.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dept. of Commerce, Community, & Economic Development (2019). High School Graduate Count [Dataset]. https://hub.arcgis.com/maps/DCCED::high-school-graduate-count

High School Graduate Count

Explore at:
194 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 5, 2019
Dataset authored and provided by
Dept. of Commerce, Community, & Economic Development
Description

Count of high school graduates for each public school in Alaska. Data covers the School Year 2013 to the present. Each year's count includes students graduating at any point during the school year (July 1 to June 30).Source: Alaska Department of Education & Early Development

This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.

Search
Clear search
Close search
Google apps
Main menu