100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. T

    Canada Average House Prices

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Average House Prices [Dataset]. https://tradingeconomics.com/canada/average-house-prices
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2005 - Oct 31, 2025
    Area covered
    Canada
    Description

    Average House Prices in Canada increased to 688800 CAD in October from 687600 CAD in September of 2025. This dataset includes a chart with historical data for Canada Average House Prices.

  3. Average house price in the UK 1995-2024, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average house price in the UK 1995-2024, by country [Dataset]. https://www.statista.com/statistics/751694/average-house-price-in-the-uk-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    In December 2024, the average house price in England was pricier than in any other country. This considerable disparity in average house prices is in no small part down to the country's capital city, where the average asking price was more than double that of the UK’s average. Even in London, for those who can afford a mortgage, the savings made through buying over renting can be beneficial. What drives house prices? Average house prices are affected by several factors, including economic growth, unemployment, and interest rates. Housing supply also plays a considerable role, with a shortage of supply leading to increased competition and an upward push in prices. Conversely, an excess of housing means prices fall to stimulate buyers. House prices still set to grow The housing market in the UK is expected to continue to grow in the next years. By 2029,.the annual number of housing transactions is set to reach *** million. With transactions on the rise, the average house price is also set to rise.

  4. T

    AVERAGE HOUSE PRICES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). AVERAGE HOUSE PRICES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/average-house-prices
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for AVERAGE HOUSE PRICES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. y

    Average House Price - Dataset - York Open Data

    • data.yorkopendata.org
    • ckan.york.staging.datopian.com
    Updated Feb 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Average House Price - Dataset - York Open Data [Dataset]. https://data.yorkopendata.org/dataset/kpi-cjge121a
    Explore at:
    Dataset updated
    Feb 4, 2016
    License

    Open Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
    License information was derived automatically

    Area covered
    York
    Description

    Average House Price

  6. Average house price in Canada 2018-2024, with a forecast by 2026

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in Canada 2018-2024, with a forecast by 2026 [Dataset]. https://www.statista.com/statistics/604228/median-house-prices-canada/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average Canadian house price declined slightly in 2023, after four years of consecutive growth. The average house price stood at ******* Canadian dollars in 2023 and was forecast to reach ******* Canadian dollars by 2026. Home sales on the rise The number of housing units sold is also set to increase over the two-year period. From ******* units sold, the annual number of home sales in the country is expected to rise to ******* in 2025. British Columbia and Ontario have traditionally been housing markets with prices above the Canadian average, and both are set to witness an increase in sales in 2025. How did Canadians feel about the future development of house prices? When it comes to consumer confidence in the performance of the real estate market in the next six months, Canadian consumers in 2024 mostly expected that the market would go up. A slightly lower share of the respondents believed real estate prices would remain the same.

  7. A

    Australia House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Australia House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/australia/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2022 - Jun 1, 2025
    Area covered
    Australia
    Description

    Key information about House Prices Growth

    • Australia house prices grew 3.5% YoY in Jun 2025, following an increase of 4.2% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Sep 2004 to Jun 2025, with an average growth rate of 0.0%.

    CEIC calculates quarterly House Price Index Growth from quarterly Residential Dwellings: Mean Price of Eight Capital Cities. The Australian Bureau of Statistics provides Residential Dwellings: Mean Price of Eight Capital Cities in local currency. House Price Index Growth prior to Q3 2012 is calculated from Residential Property Price Index: Weighted Average of Eight Capital Cities.

  8. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Sep 30, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  9. House Price Regression Dataset

    • kaggle.com
    zip
    Updated Sep 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prokshitha Polemoni (2024). House Price Regression Dataset [Dataset]. https://www.kaggle.com/datasets/prokshitha/home-value-insights
    Explore at:
    zip(27045 bytes)Available download formats
    Dataset updated
    Sep 6, 2024
    Authors
    Prokshitha Polemoni
    Description

    Home Value Insights: A Beginner's Regression Dataset

    This dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.

    Features:

    1. Square_Footage: The size of the house in square feet. Larger homes typically have higher prices.
    2. Num_Bedrooms: The number of bedrooms in the house. More bedrooms generally increase the value of a home.
    3. Num_Bathrooms: The number of bathrooms in the house. Houses with more bathrooms are typically priced higher.
    4. Year_Built: The year the house was built. Older houses may be priced lower due to wear and tear.
    5. Lot_Size: The size of the lot the house is built on, measured in acres. Larger lots tend to add value to a property.
    6. Garage_Size: The number of cars that can fit in the garage. Houses with larger garages are usually more expensive.
    7. Neighborhood_Quality: A rating of the neighborhood’s quality on a scale of 1-10, where 10 indicates a high-quality neighborhood. Better neighborhoods usually command higher prices.
    8. House_Price (Target Variable): The price of the house, which is the dependent variable you aim to predict.

    Potential Uses:

    1. Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.

    2. Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.

    3. Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.

    4. Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.

    Versatility:

    • The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.

    • It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.

    • This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.

  10. Mean house prices for subnational geographies: HPSSA dataset 27

    • cy.ons.gov.uk
    • ons.gov.uk
    xls
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Mean house prices for subnational geographies: HPSSA dataset 27 [Dataset]. https://cy.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/meanpricepaidforsubnationalgeographieshpssadataset27
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Mean price paid for residential property in England and Wales, by property type and subnational geographies. Annual data.

  11. C

    Canada House Prices Growth

    • ceicdata.com
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Canada House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/canada/house-prices-growth
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 1, 2024 - Oct 1, 2025
    Area covered
    Canada
    Description

    Key information about House Prices Growth

    • Canada house prices dropped 1.8% YoY in Oct 2025, following a decrease of 1.8% YoY in the previous month.
    • YoY growth data is updated monthly, available from Jan 1982 to Oct 2025, with an average growth rate of 5.1%.
    • House price data reached an all-time high of 16.5% in Mar 1989 and a record low of -9.7% in Apr 1991.

    CEIC calculates House Prices Growth from monthly House Price Index. Statistics Canada provides House Price Index with base December 2016=100. House Price Index covers New Housing only.

  12. Average house prices in England 1995-2024, by region

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average house prices in England 1995-2024, by region [Dataset]. https://www.statista.com/statistics/751646/average-regional-house-price-in-england/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    England
    Description

    House prices in England have increased notably in the last 10 years, despite a slight decline in 2023. In December 2024, London retained its position as the most expensive regional market, with the average house price at ******* British pounds. According to the UK regional house price index, Northern Ireland saw the highest increase in house prices since 2023.

  13. F

    Housing Inventory: Average Listing Price in New Jersey

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Average Listing Price in New Jersey [Dataset]. https://fred.stlouisfed.org/series/AVELISPRINJ
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    New Jersey
    Description

    Graph and download economic data for Housing Inventory: Average Listing Price in New Jersey (AVELISPRINJ) from Jul 2016 to Oct 2025 about NJ, average, listing, price, and USA.

  14. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  15. J

    Japan House Prices Growth

    • ceicdata.com
    Updated Mar 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Japan House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/japan/house-prices-growth
    Explore at:
    Dataset updated
    Mar 15, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2024 - Aug 1, 2025
    Area covered
    Japan
    Description

    Key information about House Prices Growth

    • Japan house prices grew 3.4% YoY in Aug 2025, following an increase of 4.7% YoY in the previous month.
    • YoY growth data is updated monthly, available from Apr 2009 to Aug 2025, with an average growth rate of 1.3%.
    • House price data reached an all-time high of 10.2% in Apr 2022 and a record low of -9.4% in Apr 2009.

    CEIC calculates House Prices Growth from monthly Residential Property Price Index. The Ministry of Land, Infrastructure, Transport and Tourism provides Residential Property Price Index with base 2010=100.

  16. Countries with the highest inflation-adjusted house price growth worldwide...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Countries with the highest inflation-adjusted house price growth worldwide 2025 [Dataset]. https://www.statista.com/statistics/237527/house-price-changes-five-year-trend/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2025, North Macedonia, Portugal, and Bulgaria registered the highest house price increase in real terms (adjusted for inflation). In North Macedonia, house prices outgrew inflation by nearly ** percent. When comparing the nominal price change, which does not take inflation into consideration, the average house price growth was even higher.

    Meanwhile, many countries experienced declining prices, with Hong Kong recording the biggest decline, at ***** percent. That has to do with a broader trend of a slowing global housing market.

  17. House Prices in Malaysia (2025)

    • kaggle.com
    zip
    Updated Jan 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jien Weng (2025). House Prices in Malaysia (2025) [Dataset]. https://www.kaggle.com/datasets/lyhatt/house-prices-in-malaysia-2025
    Explore at:
    zip(39697 bytes)Available download formats
    Dataset updated
    Jan 3, 2025
    Authors
    Jien Weng
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Malaysia
    Description

    This dataset contains 2,000 entries of house price data from all states in Malaysia, providing a comprehensive overview of the country’s real estate market for 2025. Sourced from Brickz, a trusted platform for property transaction insights, it includes detailed information such as property location, tenure, type, median prices, and transaction counts. This dataset is ideal for real estate market analysis, predictive modeling, and exploring trends across Malaysia’s diverse property market.

    https://encrypted-tbn1.gstatic.com/licensed-image?q=tbn:ANd9GcR8ttDRWTx7dIxuUegBTsggS4a6tQrnNA6DEW_HJu2DphQNsverV0PYsSkdbSdqm4qRaRuBOh4Txbv11yXMxIKWqh-_WAkeTuQI8Diu-Q" alt="Kuala Lumpur, Malaysia">

    Data Columns (Total 8 Columns):

    1. Township: The specific township where the property is located (e.g., Cheras, Subang Jaya).
    2. Area: The locality or broader area encompassing the township (e.g., Klang Valley, Penang Island).
    3. State: The Malaysian state where the property is situated (e.g., Selangor, Johor, Penang).
    4. Tenure: The property ownership type (e.g., Freehold, Leasehold).
    5. Type: The category of property (e.g., Terrace, Condominium, Semi-Detached).
    6. Median_Price: The median price (in MYR) for properties in the specified township or area.
    7. Median_PSF: The median price per square foot (in MYR) for properties.
    8. Transactions: The number of recorded property transactions.

    Future Plans:

    • Expanded Coverage: This dataset will be regularly updated with additional property data to make it even more versatile.
    • Enhanced Features: Future updates may include rental prices, amenities, or property-specific details to offer deeper insights into Malaysia’s housing market.
  18. S

    South Korea House price index, June, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). South Korea House price index, June, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/South-Korea/house_price_index/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1990 - Jun 30, 2025
    Area covered
    South Korea
    Description

    House price index in South Korea, June, 2025 The most recent value is 142.39 index points as of Q2 2025, an increase compared to the previous value of 142.34 index points. Historically, the average for South Korea from Q1 1990 to Q2 2025 is 94.5 index points. The minimum of 57.48 index points was recorded in Q4 1998, while the maximum of 154.12 index points was reached in Q2 2022. | TheGlobalEconomy.com

  19. Average price of single-family homes in the Netherlands 2025, by province

    • statista.com
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price of single-family homes in the Netherlands 2025, by province [Dataset]. https://www.statista.com/statistics/630471/average-price-of-single-family-homes-in-the-netherlands-by-province/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Netherlands
    Description

    What is the average price of residential property in the Netherlands? In the third quarter of 2025, a single-family home cost approximately 568,000 euros. There were large differences between the Dutch provinces, however. Single-family homes were most expensive in the central province of Utrecht, with an average price of 778,000 euros, whereas a similar house in Zeeland had an average price tag of 390,000 euros. Overall, the average price a private individual would pay when buying any type of existing residential property (such as single-family homes but also, for example, an apartment) was approximately 416,000 euros in 2023. Do the Dutch prefer to buy or to rent a house? The Netherlands had a slightly higher homeownership rate (the share of owner-occupied dwellings of all homes) in 2024 than other countries in Northwestern Europe. About 69 percent of all Dutch houses were owned, whereas this percentage was lower in Germany, France, and the United Kingdom. This is an effect of past developments: the price to rent ratio (the development of the nominal purchase price of a house divided by the annual rent of a similar place with 2015 as a base year) shows that the gap between house prices and rents has continuously widened in recent years. Despite a slight decline in the ratio due to slowing house price growth and accelerating rental growth, in 2023, the cost of buying a home had grown significantly faster relative to the cost of renting. Mortgages in the Netherlands Additionally, the Netherlands has one of the highest mortgage debts among private individuals in Europe. In 2025, total debt exceeded 868 billion euros. This has a political background, as the Dutch tax system allowed homeowners for many years to deduct interest paid on mortgages from pre-tax income for a maximum period of thirty years, essentially allowing for income support for homeowners. In the Netherlands, this system is known as hypotheekrenteaftrek. Note that since 2014, the Dutch government has been slowly scaling this down, with a planned acceleration from 2020 onwards.

  20. Housing Price Prediction using DT and RF in R

    • kaggle.com
    zip
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Housing Price Prediction using DT and RF in R [Dataset]. https://www.kaggle.com/datasets/vikramamin/housing-price-prediction-using-dt-and-rf-in-r
    Explore at:
    zip(629100 bytes)Available download formats
    Dataset updated
    Aug 31, 2023
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Objective: To predict the prices of houses in the City of Melbourne
    • Approach: Using Decision Tree and Random Forest https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Ffc6fb7d0bd8e854daf7a6f033937a397%2FPicture1.png?generation=1693489996707941&alt=media" alt="">
    • Data Cleaning:
    • Date column is shown as a character vector which is converted into a date vector using the library ‘lubridate’
    • We create a new column called age to understand the age of the house as it can be a factor in the pricing of the house. We extract the year from column ‘Date’ and subtract it from the column ‘Year Built’
    • We remove 11566 records which have missing values
    • We drop columns which are not significant such as ‘X’, ‘suburb’, ‘address’, (we have kept zipcode as it serves the purpose in place of suburb and address), ‘type’, ‘method’, ‘SellerG’, ‘date’, ‘Car’, ‘year built’, ‘Council Area’, ‘Region Name’
    • We split the data into ‘train’ and ‘test’ in 80/20 ratio using the sample function
    • Run libraries ‘rpart’, ‘rpart.plot’, ‘rattle’, ‘RcolorBrewer’
    • Run decision tree using the rpart function. ‘Price’ is the dependent variable https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6065322d19b1376c4a341a4f22933a51%2FPicture2.png?generation=1693490067579017&alt=media" alt="">
    • Average price for 5464 houses is $1084349
    • Where building area is less than 200.5, the average price for 4582 houses is $931445. Where building area is less than 200.5 & age of the building is less than 67.5 years, the avg price for 3385 houses is $799299.6.
    • $4801538 is the Highest average prices of 13 houses where distance is lower than 5.35 & building are is >280.5
      https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F136542b7afb6f03c1890bae9b07dc464%2FDecision%20Tree%20Plot.jpeg?generation=1693490124083168&alt=media" alt="">
    • We use the caret package for tuning the parameter and the optimal complexity parameter found is 0.01 with RMSE 445197.9 https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Feb1633df9dd61ba3a51574873b055fd0%2FPicture3.png?generation=1693490163033658&alt=media" alt="">
    • We use library (Metrics) to find out the RMSE ($392107), MAPE (0.297) which means an accuracy of 99.70% and MAE ($272015.4)
    • Variables ‘postcode’, longitude and building are the most important variables
    • Test$Price indicates the actual price and test$predicted indicates the predicted price for particular 6 houses. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F620b1aad968c9aee169d0e7371bf3818%2FPicture4.png?generation=1693490211728176&alt=media" alt="">
    • We use the default parameters of random forest on the train data https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fe9a3c3f8776ee055e4a1bb92d782e19c%2FPicture5.png?generation=1693490244695668&alt=media" alt="">
    • The below image indicates that ‘Building Area’, ‘Age of the house’ and ‘Distance’ are the most important variables that affect the price of the house. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc14d6266184db8f30290c528d72b9f6b%2FRandom%20Forest%20Variables%20Importance.jpeg?generation=1693490284920037&alt=media" alt="">
    • Based on the default parameters, RMSE is $250426.2, MAPE is 0.147 (accuracy is 99.853%) and MAE is $151657.7
    • Error starts to remain constant between 100 to 200 trees and thereafter there is almost minimal reduction. We can choose N tree=200. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F365f9e8587d3a65805330889d22f9e60%2FNtree%20Plot.jpeg?generation=1693490308734539&alt=media" alt="">
    • We tune the model and find mtry = 3 has the lowest out of bag error
    • We use the caret package and use 5 fold cross validation technique
    • RMSE is $252216.10 , MAPE is 0.146 (accuracy is 99.854%) , MAE is $151669.4
    • We can conclude that Random Forest give us more accurate results as compared to Decision Tree
    • In Random Forest , the default parameters (N tree = 500) give us lower RMSE and MAPE as compared to N tree = 200. So we can proceed with those parameters.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu