Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for Argentina Uis Mean Years Of Schooling Of The Population Age 25 Female
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UIS: Mean years of schooling (ISCED 1 or higher), population 25+ years, both sexes in Argentina was reported at 11.16 Years in 2018, according to the World Bank collection of development indicators, compiled from officially recognized sources. Argentina - Mean years of schooling of the population age 25+. Total - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.
Facebook
TwitterThis study provides an update on measures of educational attainment for a broad cross section of countries. In our previous work (Barro and Lee, 1993), we constructed estimates of educational attainment by sex for persons aged 25 and over. The values applied to 129 countries over a five-year intervals from 1960 to 1985.
The present study adds census information for 1985 and 1990 and updates the estimates of educational attainment to 1990. We also have been able to add a few countries, notably China, which were previously omitted because of missing data.
Dataset:
Educational attainment at various levels for the male and female population. The data set includes estimates of educational attainment for the population by age - over age 15 and over age 25 - for 126 countries in the world. (see Barro, Robert and J.W. Lee, "International Measures of Schooling Years and Schooling Quality, AER, Papers and Proceedings, 86(2), pp. 218-223 and also see "International Data on Education", manuscipt.) Data are presented quinquennially for the years 1960-1990;
Educational quality across countries. Table 1 presents data on measures of schooling inputs at five-year intervals from 1960 to 1990. Table 2 contains the data on average test scores for the students of the different age groups for the various subjects.Please see Jong-Wha Lee and Robert J. Barro, "Schooling Quality in a Cross-Section of Countries," (NBER Working Paper No.w6198, September 1997) for more detailed explanation and sources of data.
The data set cobvers the following countries: - Afghanistan - Albania - Algeria - Angola - Argentina - Australia - Austria - Bahamas, The - Bahrain - Bangladesh - Barbados - Belgium - Benin - Bolivia - Botswana - Brazil - Bulgaria - Burkina Faso - Burundi - Cameroon - Canada - Cape verde - Central African Rep. - Chad - Chile - China - Colombia - Comoros - Congo - Costa Rica - Cote d'Ivoire - Cuba - Cyprus - Czechoslovakia - Denmark - Dominica - Dominican Rep. - Ecuador - Egypt - El Salvador - Ethiopia - Fiji - Finland - France - Gabon - Gambia - Germany, East - Germany, West - Ghana - Greece - Grenada - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong Kong - Hungary - Iceland - India - Indonesia - Iran, I.R. of - Iraq - Ireland - Israel - Italy - Jamaica - Japan - Jordan - Kenya - Korea - Kuwait - Lesotho - Liberia - Luxembourg - Madagascar - Malawi - Malaysia - Mali - Malta - Mauritania - Mauritius - Mexico - Morocco - Mozambique - Myanmar (Burma) - Nepal - Netherlands - New Zealand - Nicaragua - Niger - Nigeria - Norway - Oman - Pakistan - Panama - Papua New Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Romania - Rwanda - Saudi Arabia - Senegal - Seychelles - Sierra Leone - Singapore - Solomon Islands - Somalia - South africa - Spain - Sri Lanka - St.Lucia - St.Vincent & Grens. - Sudan - Suriname - Swaziland - Sweden - Switzerland - Syria - Taiwan - Tanzania - Thailand - Togo - Tonga - Trinidad & Tobago - Tunisia - Turkey - U.S.S.R. - Uganda - United Arab Emirates - United Kingdom - United States - Uruguay - Vanuatu - Venezuela - Western Samoa - Yemen, N.Arab - Yugoslavia - Zaire - Zambia - Zimbabwe
Facebook
TwitterThe PIRLS 2006 aimed to generate a database of student achievement data in addition to information on student, parent, teacher, and school background data for the 47 areas that participated in PIRLS 2006.
Nationally representative
Units of analysis in the study are schools, students, parents and teachers.
PIRLS is a study of student achievement in reading comprehension in primary school, and is targeted at the grade level in which students are at the transition from learning to read to reading to learn, which is the fourth grade in most countries. The formal definition of the PIRLS target population makes use of UNESCO's International Standard Classification of Education (ISCED) in identifying the appropriate target grade:
"…all students enrolled in the grade that represents four years of schooling, counting from the first year of ISCED Level 1, providing the mean age at the time of testing is at least 9.5 years. For most countries, the target grade should be the fourth grade, or its national equivalent."
ISCED Level 1 corresponds to primary education or the first stage of basic education, and should mark the beginning of "systematic apprenticeship of reading, writing, and mathematics" (UNESCO, 1999). By the fourth year of Level 1, students have had 4 years of formal instruction in reading, and are in the process of becoming independent readers. In IEA studies, the above definition corresponds to what is known as the international desired target population. Each participating country was expected to define its national desired population to correspond as closely as possible to this definition (i.e., its fourth grade of primary school). In order to measure trends, it was critical that countries that participated in PIRLS 2001, the previous cycle of PIRLS, choose the same target grade for PIRLS 2006 that was used in PIRLS 2001. Information about the target grade in each country is provided in Chapter 9 of the PIRLS 2006 Technical Report.
Although countries were expected to include all students in the target grade in their definition of the population, sometimes it was not possible to include all students who fell under the definition of the international desired target population. Consequently, occasionally a country's national desired target population excluded some section of the population, based on geographic or linguistic constraints. For example, Lithuania's national desired target population included only students in Lithuanian-speaking schools, representing approximately 93 percent of the international desired population of students in the country. PIRLS participants were expected to ensure that the national defined population included at least 95 percent of the national desired population of students. Exclusions (which had to be kept to a minimum) could occur at the school level, within the sampled schools, or both. Although countries were expected to do everything possible to maximize coverage of the national desired population, school-level exclusions sometimes were necessary. Keeping within the 95 percent limit, school-level exclusions could include schools that:
The difference between these school-level exclusions and those at the previous level is that these schools were included as part of the sampling frame (i.e., the list of schools to be sampled). Th ey then were eliminated on an individual basis if it was not feasible to include them in the testing.
In many education systems, students with special educational needs are included in ordinary classes. Due to this fact, another level of exclusions is necessary to reach an eff ective target population-the population of students who ultimately will be tested. These are called within-school exclusions and pertain to students who are unable to be tested for a particular reason but are part of a regular classroom. There are three types of within-school exclusions.
Students eligible for within-school exclusion were identified by staff at the schools and could still be administered the test if the school did not want the student to feel out of place during the assessment (though the data from these students were not included in any analyses). Again, it was important to ensure that this population was as close to the national desired target population as possible. If combined, school-level and within-school exclusions exceeded 5 percent of the national desired target population, results were annotated in the PIRLS 2006 International Report (Mullis, Martin, Kennedy, & Foy, 2007). Target population coverage and exclusion rates are displayed for each country in Chapter 9 of the PIRLS 2006 Technical Report. Descriptions of the countries' school-level and within-school exclusions can be found in Appendix B of the PIRLS 2006 Technical Report.
Sample survey data [ssd]
The basic sample design used in PIRLS 2006 is known as a two-stage stratified cluster design, with the first stage consisting of a sample of schools, and the second stage consisting of a sample of intact classrooms from the target grade in the sampled schools. While all participants adopted this basic two-stage design, four countries, with approval from the PIRLS sampling consultants, added an extra sampling stage. The Russian Federation and the United States introduced a preliminary sampling stage, (first sampling regions in the case of the Russian Federation and primary sampling units consisting of metropolitan areas and counties in the case of the United States). Morocco and Singapore also added a third sampling stage; in these cases, sub-sampling students within classrooms rather than selecting intact classes.
For countries participating in PIRLS 2006, school stratification was used to enhance the precision of the survey results. Many participants employed explicit stratification, where the complete school sampling frame was divided into smaller sampling frames according to some criterion, such as region, to ensurea predetermined number of schools sampled for each stratum. For example, Austria divided its sampling frame into nine regions to ensure proportional representation by region (see Appendix B for stratification information for each country). Stratification also could be done implicitly, a procedure by which schools in a sampling frame were sorted according to a set of stratification variables prior to sampling. For example, Austria employed implicit stratification by district and school size within each regional stratum. Regardless of the other stratification variables used, all countries used implicit stratification by a measure of size (MOS) of the school.
All countries used a systematic (random start, fixed interval) probability proportional-to-size (PPS) sampling approach to sample schools. Note that when this method is combined with an implicit stratification procedure, the allocation of schools in the sample is proportional to the size of the implicit strata. Within the sampled schools, classes were sampled using a systematic random method in all countries except Morocco and Singapore, where classes were sampled with probability proportional to size, and students within classes sampled with equal probability. The PIRLS 2006 sample designs were implemented in an acceptable manner by all participants.
8 National Research Coordinators (NRCs) encountered organizational constraints in their systems that necessitated deviations from the sample design. In each case, the Statistics Canada sampling expert was consulted to ensure that the altered design remained compatible with the PIRLS standards.
These country specific deviations from sample design are detailed in Appendix B of the PIRLS 2006 Technical Report (page 231) attached as Related Material.
Face-to-face [f2f]
PIRLS Background Questionnaires By gathering information about children’s experiences together with reading achievement on the PIRLS test, it is possible to identify the factors or combinations of factors that relate to high reading literacy. An important part of the PIRLS design is a set of questionnaires targeting factors related to reading literacy. PIRLS administered four questionnaires: to the tested students, to their parents, to their reading teachers, and to their school principals.
Student Questionnaire Each student taking the PIRLS reading assessment completes the student questionnaire. The questionnaire asks about aspects of students’ home and school experiences - including instructional experiences and reading for homework, self-perceptions and attitudes towards reading, out-of-school reading habits, computer use, home literacy resources, and basic demographic information.
Learning to Read (Home) Survey The learning to read survey is completed by the parents or primary caregivers of each student taking the PIRLS reading assessment. It addresses child-parent literacy interactions, home literacy resources, parents’ reading habits and attitudes, homeschool connections, and basic demographic and socioeconomic indicators.
Teacher Questionnaire The reading teacher of each fourth-grade class sampled for PIRLS completes a questionnaire designed to gather information about classroom contexts for developing reading literacy. This questionnaire
Facebook
TwitterPIRLS provides internationally comparative data on how well children read by assessing students’ reading achievement at the end of grade four. PIRLS 2016 is the fourth cycle of the study and collects considerable background information on how education systems provide educational opportunities to their students, as well as the factors that influence how students use this opportunity. In 2016 PIRLS was extended to include ePIRLS – an innovative assessment of online reading.
The results of PIRLS 2016 demonstrate a number of positive developments in reading literacy worldwide. For the first time in the history of the study, as many as 96 percent of fourth graders from over 60 education systems achieved above the PIRLS low international benchmark.
Nationally representative samples of approximately 4,000 students from 150 to 200 schools participated in PIRLS 2016. About 319,000 students, 310,000 parents, 16,000 teachers, and 12,000 schools participated in total.
The unit of analysis describes:
Schools
Students
Parents
Teachers
All students enrolled in the grade that represents four years of schooling counting from the first year of ISCED Level 1, providing the mean age at the time of testing is at least 9.5 years.
All students enrolled in the target grade, regardless of their age, belong to the international target population and should be eligible to participate in PIRLS. Because students are sampled in two stages, first by randomly selecting a school and then randomly selecting a class from within the school, it is necessary to identify all schools in which eligible students are enrolled. Essentially, eligible schools for PIRLS are those that have any students enrolled in the target grade, regardless of type of school.
Sample survey data [ssd]
PIRLS is designed to provide valid and reliable measurement of trends in student achievement in countries around the world, while keeping to a minimum the burden on schools, teachers, and students. The PIRLS program employs rigorous school and classroom sampling techniques so that achievement in the student population as a whole may be estimated accurately by assessing just a sample of students from a sample of schools. PIRLS assesses reading achievement at fourth grade. The PIRLS 2016 cycle also included PIRLS Literacy-a new, less difficult reading literacy assessment, and ePIRLS-an extension of PIRLS with a focus on online informational reading.
PIRLS employs a two-stage random sample design, with a sample of schools drawn as a first stage and one or more intact classes of students selected from each of the sampled schools as a second stage. Intact classes of students are sampled rather than individuals from across the grade level or of a certain age because PIRLS pays particular attention to students’ curricular and instructional experiences, and these typically are organized on a classroom basis. Sampling intact classes also has the operational advantage of less disruption to the school’s day-to-day business than individual student sampling.
SAMPLE SIZE
For most countries, the PIRLS precision requirements are met with a school sample of 150 schools and a student sample of 4,000 students for each target grade. Depending on the average class size in the country, one class from each sampled school may be sufficient to achieve the desired student sample size. For example, if the average class size in a country were 27 students, a single class from each of 150 schools would provide a sample of 4,050 students (assuming full participation by schools and students). Some countries choose to sample more than one class per school, either to increase the size of the student sample or to provide a better estimate of school level effects.
For countries choosing to participate in both PIRLS and PIRLS Literacy, the required student sample size is doubled-i.e., around 8,000 sampled students. Countries could choose to select more schools or more classes within sampled schools to achieve the required sample size. Because ePIRLS is designed to be administered to students also taking PIRLS, the PIRLS sample size requirement remains the same for countries choosing also to participate in ePIRLS.
PIRLS STRATIFIED TWO-STAGE CLUSTER SAMPLE DESIGN
The basic international sample design for PIRLS is a stratified two-stage cluster sample design, as follows:
First Sampling Stage. For the first sampling stage, schools are sampled with probabilities proportional to their size (PPS) from the list of all schools in the population that contain eligible students. The schools in this list (or sampling frame) may be stratified (sorted) according to important demographic variables. Schools for the field test and data collection are sampled simultaneously using a systematic random sampling approach. Two replacement schools are also pre-assigned to each sampled school during the sample selection process, and these replacement schools are held in reserve in case the originally sampled school refuses to participate. Replacement schools are used solely to compensate for sample size losses in the event that the originally sampled school does not participate. School sampling is conducted for each country by Statistics Canada with assistance from IEA Hamburg, using the sampling frame provided by the country’s National Research Coordinator.
Second Sampling Stage. The second sampling stage consists of the selection of one (or more) intact class from the target grade of each participating school. Class sampling in each country is conducted by the National Research Coordinator using the Within-School Sampling Software (WinW3S) developed by IEA Hamburg and Statistics Canada. Having secured a sampled school’s agreement to participate in the assessment, the National Research Coordinator requests information about the number of classes and teachers in the school and enters it in the WinW3S database.
Classes smaller than a specified minimum size are grouped into pseudo-classes prior to sampling. The software selects classes with equal probabilities within schools. All students in each sampled class participate in the assessment. Sampled classes that refuse to participate may not be replaced.
For countries participating in both PIRLS and PIRLS Literacy, students within a sampled class are randomly assigned either a PIRLS or PIRLS Literacy booklet through a booklet rotation system. This is done to ensure that PIRLS and PIRLS Literacy are administered to probabilistically equivalent samples. In countries taking part in ePIRLS, all students assessed in PIRLS are expected to participate in ePIRLS.
STRATIFICATION
Stratification consists of arranging the schools in the target population into groups, or strata, that share common characteristics such as geographic region or school type. Examples of stratification variables used in PIRLS include region of the country (e.g., states or provinces); school type or source of funding (e.g., public or private); language of instruction; level of urbanization (e.g., urban or rural area); socioeconomic indicators; and school performance on national examinations.
In PIRLS, stratification is used to:
Improve the efficiency of the sample design, thereby making survey estimates more reliable
Apply different sample designs, such as disproportionate sample allocations, to specific groups of schools (e.g., those in certain states or provinces)
Ensure proportional representation of specific groups of schools in the sample School stratification can take two forms: explicit and implicit. In explicit stratification, a separate school list or sampling frame is constructed for each stratum and a sample of schools is drawn from that stratum. In PIRLS, the major reason for considering explicit stratification is disproportionate allocation of the school sample across strata. For example, in order to produce equally reliable estimates for each geographic region in a country, explicit stratification by region may be used to ensure the same number of schools in the sample for each region, regardless of the relative population size of the regions.
Implicit stratification consists of sorting the schools by one or more stratification variables within each explicit stratum, or within the entire sampling frame if explicit stratification is not used. The combined use of implicit strata and systematic sampling is a very simple and effective way of ensuring a proportional sample allocation of students across all implicit strata. Implicit stratification also can lead to improved reliability of achievement estimates when the implicit stratification variables are correlated with student achievement.
National Research Coordinators consult with Statistics Canada and IEA Hamburg to identify the stratification variables to be included in their sampling plans. The school sampling frame is sorted by the stratification variables prior to sampling schools so that adjacent schools are as similar as possible. Regardless of any other explicit or implicit variables that may be used, the school size is always included as an implicit stratification variable.
SCHOOL SAMPLING FRAME
One of the National Research Coordinator’s most important sampling tasks is the construction of a school sampling frame for the target population. The sampling frame is a list of all schools in the country that have students enrolled in the target grade and is the list from which the school sample is drawn. A well-constructed sampling frame provides complete coverage of the national target population without being contaminated by incorrect or duplicate entries or entries that refer to elements that are not
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Epidemiological data on dementia and cognitive impairment are scarce in South America. In Argentina, no dementia/cognitive impairment population-based epidemiological studies are available. The Ceibo Study is a population-based epidemiological study of dementia and cognitive impairment in individuals over 60 to be conducted. The present paper reports the results of the pilot phase (survey of cognitive impairment) conducted in Cañuelas (province of Buenos Aires). METHODS: In a door-to-door survey, trained high school students evaluated 1453 individuals aged 60 years and over in one day using a demographic data and risk factors questionnaire, the Mini-Mental State Examination (MMSE) and the 15-item Geriatric Depression Scale (GDS). RESULTS: Mean age of the individuals was 70.9 (±7.5) years, 61.4% were women, mean schooling was 5.5 (±3.5) years. Mean MMSE score was 24.5 (±4.7) and mean GDS 3.1 (±2.7). Risk factors of higher prevalence in the population under study were: hypertension (40.6%), smoking (35.1%), alcohol consumption (32.8%), high cholesterol (16.1%), diabetes (12.5%), cranial trauma with loss of consciousness (12.5%), 7 points or more on the GDS (11.7%). Prevalence of cognitive impairment for the whole sample was 23%, and 16.9% in subjects aged 60-69, 23.3% in 70-79 and 42.5% in subjects aged 80 or over . A significant correlation of cognitive impairment with age, functional illiteracy, cranial trauma, high blood pressure, inactivity and depression was found. CONCLUSION: In this pilot study, the prevalence of cognitive impairment was comparable with previous international studies.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for Argentina Uis Mean Years Of Schooling Of The Population Age 25 Female