Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
This work is part of the 5-year research project “Getting to the Core of Crimmigration” (project number 452-16-003), which is financed through the VIDI research scheme by the Netherlands Organization for Scientific Research (NWO), led my Professor M.A.H. Van de Woude. It as a part of Maryla Klajn’s doctoral dissertation “Agents of Change? (Hi)stories, perspectives, and every-day practices of the intra-Schengen border officials”. The paper: “Political meanings of national belonging: tracing the evolution of ‘Polskość’ in the III Republic of Poland” focuses on the a backlash response, to the effects of trans-national trends of past several decades, progressively more visible in recent years and expressed in the rise of populist, anti-migration movements in many countries throughout the world. Within the EU, Poland has become one of the most notorious anti-migration and pro- closed border states, with its new government elected in 2015 embracing a nationalist discourse, positioning the well-being of the country against the ‘invasion’ of other ethnicities and religions. The concept of Polskość, or Polish national identity (Polishness), is frequently used to legitimize political decision-making, and the idea of necessary protection of the socio-cultural homogeneity as the foundation of Polskość drives forward discussions of strengthening and securitizing the boundaries to protect it. It seems prudent then to question the meaning of that ‘national identity’, and by deconstructing values and ideas linked to that concept over time, understand what is really being protected when discussing protection of Polskość. We should ask then: in the III Republic of Poland, what were the initial political narratives that defined Polish national identity, and how have they evolved over time? This study locates and maps out shifts in the political discussions of Polskość over the last three decades by deploying critical policy discourse analysis in examination of the Polish parliamentary debates since 1989, and of Presidential New Year’s Eve addresses to the nation 1990-2018.
This digitally compiled map includes geology, geologic provinces, and oil and gas fields of Europe including Turkey. The maps are part of a worldwide series of maps on CD-ROM released by the U.S. Geological Survey's World Energy Project. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. For data management purposes the world was divided into eight energy regions corresponding approximately to the economic regions of of the world as defined by the U.S. Department of State. Europe (Region 4) includes Albania, Andorra, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, The Former Yugoslav Republic of Macedonia, Malta, Monaco, Netherlands, Norway, Poland, Portugal, Romania, San Marino, Serbia and Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom and Vatican. The depicted portion of Region 2 includes Turkey. Each region is divided into geologic provinces. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include the predominant lithologies, the age of the strata, and the structural style. Some provinces include multiple genetically-related basins. Geologic province boundaries are delineated using data from a number of geologic maps and other tectonic and geographic data (see References). Offshore province boundaries are defined by the 2000 meter bathymetric contour. Each province is assigned a unique number. Because geologic trends are independent of political boundaries, some provinces overlap two regions. The code of those provinces that lie entirely within Europe begin with the number 4 and those provinces that lie entirely within Turkey begin with the number 2. The code of those provinces that lie partly within another region may start with a 1, for the Former Soviet Union (Persits and others 1998) or a 2, for Middle East and North Africa (Pollastro , 1998; Persits and others, 1997). The centerpoint locations of oil and gas fields are plotted based on the locations in the Petroconsultants International Data Corp. (1996) database with permission. Selected provinces are currently being investigated, by Total Petroleum System analysis, and assessments are being made of the undiscovered oil and gas resource potential of these provinces. Klett and others (1997) discuss the worldwide geologic provinces and their relative ranking in terms of total known petroleum volume. Specific details of the data sources and map compilation are given in the metadata files on this CD-ROM. Some stratigraphic units are combined to simplify the map and to ensure consistency across the region. All rocks are colored by age. Igneous and metamorphic rocks are identified with fill patterns and colors. These maps are compiled using Environmental Systems Research Institute Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map are taken, with permission from ESRI's ArcWorld 1:3M digital coverage; they have no political significance and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain intellectual property of ESRI. (© 1992 and 1996, Environmental Systems Research Institute Inc. All rights reserved.)
This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela. Each region is then further divided into geologic provinces on the basis of natural geologic entities and may include a dominant structural element or a number of contiguous elements. Some provinces contain multiple genetically related basins. Geologic province boundaries for the South America are delineated using data from a number of geologic maps, and other tectonic and geographic data (see References). Offshore province boundaries are defined by the 4000 meter bathymetric contour. Each province is assigned a unique number; the first digit is the region number. It is attempted to number the provinces in geographical groups; onshore, offshore, and combined on and offshore. The list of the provinces sorted by Code is shown in Adobe Acrobat samgeo.pdf file (see section V below). Oil and gas field data from Petroconsultants International Data Corporation worldwide oil and gas field database are allocated to these provinces. The geologic provinces are being further subdivided into petroleum systems and assessment units in order to appraise the undiscovered petroleum potential of selected provinces of the world. Specific details of the data sources and map compilation are given in the metadata file on this CD-ROM. Smaller stratigraphic subdivisions of Phanerozoic rock are combined to simplify the map and to maintain consistency with other maps of the series. Precambrian rocks are undivided. Oil and gas field markers represent field centerpoints published with permission from Petroconsultants International Data Corp.,1996 database. This map is compiled using Environmental Systems Research Institute, Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map were taken, with permission, from ESRI's ArcWorld 1:3M digital coverages, have no political significance, and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain intellectual property of Environmental Systems Research Institute, Inc. (ESRI), and are used herein with permission. Copyright 1992 and 1996, Environmental Systems Research Institute, Inc. All rights reserved.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 193 countries was -0.07 points. The highest value was in Liechtenstein: 1.61 points and the lowest value was in Syria: -2.75 points. The indicator is available from 1996 to 2023. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ecoregions, in the simplest definition, are ecosystems of regional extent. Specifically, ecoregions represent distinct assemblages of biodiversity―all taxa, not just vegetation―whose boundaries include the space required to sustain ecological processes. Ecoregions provide a useful basemap for conservation planning in particular because they draw on natural, rather than political, boundaries, define distinct biogeographic assemblages and ecological habitats within biomes, and assist in representation of Earth’s biodiversity.This dataset is based on recent advances in biogeography - the science concerning the distribution of plants and animals. The original ecoregions dataset has been widely used since its introduction in 2001, underpinning the most recent analyses of the effects of global climate change on nature by ecologists to the distribution of the world's beetles to modern conservation planning.The 846 terrestrial ecoregions are grouped into 14 biomes and 8 realms. Six of these biomes are forest biomes and remaining eight are non-forest biomes. For the forest biomes, the geographic boundaries of the ecoregions (Dinerstein et al., 2017) and protected areas (UNEP-WCMC 2016) were intersected with the Global Forest Change data (Hansen et al. 2013) for the years 2000 to 2015, to calculate percent of habitat in protected areas and percent of remaining habitat outside protected areas. Likewise, the boundaries of the non-forest ecoregions and protected areas (UNEP-WCMC 2016) were intersected with Anthropogenic Biomes data (Anthromes v2) for the year 2000 (Ellis et al., 2010) to identify remaining habitats inside and outside the protected areas. Each ecoregion has a unique ID, area (sq. degrees), and NNH (Nature Needs Half) categories 1-4. NNH categories are based on percent of habitat in protected areas and percent of remaining habitat outside protected areas.Half Protected: More than 50% of the total ecoregion area is already protected.Nature Could Reach Half: Less than 50% of the total ecoregion area is protected but the amount of remaining unprotected natural habitat could bring protection to over 50% if new conservation areas are added to the system.Nature Could Recover: The amount of protected and unprotected natural habitat remaining is less than 50% but more than 20%. Ecoregions in this category would require restoration to reach Half Protected.Nature Imperilled: The amount of protected and unprotected natural habitat remaining is less than or equal to 20%. Achieving half protected is not possible in the short term and efforts should focus on conserving remaining, native habitat fragments.The updated Ecoregions 2017 is the most-up-to-date (as of February 2018) dataset on remaining habitat in each terrestrial ecoregion. It was released to chart progress towards achieving the visionary goal of Nature Needs Half, to protect half of all the land on Earth to save a living terrestrial biosphere.Note - a number of ecoregions are very complex polygons with over a million vertices, such as Rock & Ice.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the