Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Compositional data, which is data consisting of fractions or probabilities, is common in many fields including ecology, economics, physical science and political science. If these data would otherwise be normally distributed, their spread can be conveniently represented by a multivariate normal distribution truncated to the non-negative space under a unit simplex. Here this distribution is called the simplex-truncated multivariate normal distribution. For calculations on truncated distributions, it is often useful to obtain rapid estimates of their integral, mean and covariance; these quantities characterising the truncated distribution will generally possess different values to the corresponding non-truncated distribution.
In the paper "Adams, Matthew (2022) Integral, mean and covariance of the simplex-truncated multivariate normal distribution. PLoS One, 17(7), Article number: e0272014. ", three different approaches that can estimate the integral, mean and covariance of any simplex-truncated multivariate normal distribution are described and compared. These three approaches are (1) naive rejection sampling, (2) a method described by Gessner et al. that unifies subset simulation and the Holmes-Diaconis-Ross algorithm with an analytical version of elliptical slice sampling, and (3) a semi-analytical method that expresses the integral, mean and covariance in terms of integrals of hyperrectangularly-truncated multivariate normal distributions, the latter of which are readily computed in modern mathematical and statistical packages. Strong agreement is demonstrated between all three approaches, but the most computationally efficient approach depends strongly both on implementation details and the dimension of the simplex-truncated multivariate normal distribution.
This dataset consists of all code and results for the associated article.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model’s estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model’s estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Compositional data, which is data consisting of fractions or probabilities, is common in many fields including ecology, economics, physical science and political science. If these data would otherwise be normally distributed, their spread can be conveniently represented by a multivariate normal distribution truncated to the non-negative space under a unit simplex. Here this distribution is called the simplex-truncated multivariate normal distribution. For calculations on truncated distributions, it is often useful to obtain rapid estimates of their integral, mean and covariance; these quantities characterising the truncated distribution will generally possess different values to the corresponding non-truncated distribution.
In the paper "Adams, Matthew (2022) Integral, mean and covariance of the simplex-truncated multivariate normal distribution. PLoS One, 17(7), Article number: e0272014. ", three different approaches that can estimate the integral, mean and covariance of any simplex-truncated multivariate normal distribution are described and compared. These three approaches are (1) naive rejection sampling, (2) a method described by Gessner et al. that unifies subset simulation and the Holmes-Diaconis-Ross algorithm with an analytical version of elliptical slice sampling, and (3) a semi-analytical method that expresses the integral, mean and covariance in terms of integrals of hyperrectangularly-truncated multivariate normal distributions, the latter of which are readily computed in modern mathematical and statistical packages. Strong agreement is demonstrated between all three approaches, but the most computationally efficient approach depends strongly both on implementation details and the dimension of the simplex-truncated multivariate normal distribution.
This dataset consists of all code and results for the associated article.