In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya's main stock market index, the Nairobi 20, fell to 2514 points on July 11, 2025, losing 0.10% from the previous session. Over the past month, the index has climbed 11.00% and is up 48.23% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data was reported at 4,968.520 31Dec1995=100 in Nov 2018. This records a decrease from the previous number of 5,078.930 31Dec1995=100 for Oct 2018. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data is updated monthly, averaging 2,242.556 31Dec1995=100 from Dec 1999 (Median) to Nov 2018, with 228 observations. The data reached an all-time high of 5,648.470 31Dec1995=100 in Aug 2018 and a record low of 893.460 31Dec1995=100 in Sep 2002. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data remains active status in CEIC and is reported by Copenhagen Stock Exchange. The data is categorized under Global Database’s Denmark – Table DK.Z001: Copenhagen Stock Exchange: Index. On May 13, 2013 NASDAQ OMX performed changes to the KFMX indexes. The name was changeed from KFMX to OMX Copenhagen ex OMX Copenhagen 20, and the price algorithm was changed from NEWNX to Last Paid, meaning that the official closing price becomes the latest price regardless of closing best bid and ask prices.
The S&P 500, an index of 500 publicly traded companies in the United States, closed at 5,881.63 points on the last trading day of December 2024. What is the S&P 500? The S&P 500 is a stock market index that tracks the evolution of 500 companies. In contrast to the Dow Jones Industrial Index, which measures the performance of thirty large U.S. companies, the S&P 500 shows the sentiments in the broader market. Publicly traded companies Companies on the S&P 500 are publicly traded, meaning that anyone can invest in them. A large share of adults in the United States invest in the stock market, though many of these are through a retirement account or mutual fund. While most people make a modest return, the most successful investors have made billions of U.S. dollars through investing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data was reported at 59.400 % in May 2018. This records a decrease from the previous number of 60.800 % for Apr 2018. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data is updated monthly, averaging 54.500 % from Jun 2002 (Median) to May 2018, with 191 observations. The data reached an all-time high of 66.700 % in Jan 2018 and a record low of 34.000 % in Mar 2009. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H026: Consumer Sentiment Index: Savings & Retirement. The question was: What do you think the percent change that this one thousand dollar investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now?
In 2021, the Nasdaq 100 closed at 16,320.08 points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. The index value closed at 21,012.17 points in 2024, an increase of more than 4,000 points compared to its closing value for the previous year. What does the NASDAQ tell us? The Nasdaq 100 index is comprised of 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. Financial firms are represented by the NASDAQ Bank Index. A stock market index is a measurement of average performance of companies forming the index. It gives a snapshot of what investors are thinking at that particular moment. Other indices The Dow Jones Industrial Average gets more attention than the NASDAQ 100, though it only represents 30 companies. It’s best and worst days mark some of the major financial events of the past century. This helps to put more meaning behind events like Black Monday, the Wall Street crash of 1929, or the 2008 Financial Crisis, as well as the speed of their recoveries in financial markets.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a...
Time series modelling for the prediction of stocks prices is a challenging task. Political events, market expectations and economic factors are just a few known factors that can impact financial market behaviour. The financial market is a complex, noisy, evolutionary and chaotic field of study that attracts many enthusiasts and researches — the first, usually driven by the economic benefit of it, the latter, inspired by the challenge of handling such complex data.
This project aims to predict Facebook (FB) next day stock price direction with machine learning algorithms. Technical indicators and global market indexes are used, and their influence on the forecast accuracy is analysed.
Daily values were retrieved (volume, open, close, low and high prices) from Yahoo! Finance website. For Facebook (FB), July 2012 was the earliest data available. The date range is July 2012 to November 2018.
The closing price of current day C(t) and closing price from the previous day C(t-1) are compared to build the initial dataset. The objective is to define if the price trend is going up or down by analysing these two values. For each instance, a comparison was made and recorded. If the price is going up, C(t) > C(t-1), class “1” is assigned. Class “0” is assigned for the opposite case.
Research was initiated to understand which features could help the model to forecast the stock direction. Three main routes were found: Lag features, Technical Indicators and Global Market Indexes. Below is an explanation of each group of features.
Lag features are features that contain the closing price and direction of previous days and it is a common strategy for Time Series models. The following features were added:
Technical indicators are used by researches and financial market analysts to support stock market trend forecasting. Common indicators retrieved from the literature were selected and calculated for Facebook stock. Techical Indicators added:
Technical indicators provide a suggestion of the stock price movement. Additional features were created for each technical indicator by analysing its daily value and assigning a class according to their meaning. Class “1” is given if the indicator numerical value suggests upper trend, class “0” for a downtrend. In other words, financial market analysis is performed at a simplistic level, in the attempt to translate what the continuous value means.
For a given country or region, the stock market index characterises the performance of its financial market and the overall local economy. For this reason, the same day performance of these markets could contribute to the machine learning model predictions. Six global indexes were added as features, with their closing direction as up or down, class “1” or “0”, respectively. Data for these indexes (Nikkei, Hang Seng, All Ordinaries, Euronext 100, SSE and DAX) were also retrieved from Yahoo! Finance.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data was reported at 8,112.710 31Dec1995=100 in Oct 2018. This records a decrease from the previous number of 8,752.230 31Dec1995=100 for Sep 2018. Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data is updated monthly, averaging 4,294.127 31Dec1995=100 from Nov 2005 (Median) to Oct 2018, with 156 observations. The data reached an all-time high of 8,991.170 31Dec1995=100 in Aug 2018 and a record low of 1,886.816 31Dec1995=100 in Mar 2009. Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data remains active status in CEIC and is reported by Copenhagen Stock Exchange. The data is categorized under Global Database’s Denmark – Table DK.Z001: Copenhagen Stock Exchange: Index. On May 13, 2013 NASDAQ OMX performed changes to the KFMX indexes. The name was changeed from KFMX to OMX Copenhagen ex OMX Copenhagen 20, and the price algorithm was changed from NEWNX to Last Paid, meaning that the official closing price becomes the latest price regardless of closing best bid and ask prices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.
The Dow Jones Composite Index finished the year 2024 at 13,391.71 points, an increase compared to the previous year. Even with the economic effects of the global coronavirus (COVID-19) pandemic, 2021 had the highest point of the index in the past two decades. What is Dow Jones Composite Index? The Dow Jones Composite Index is one of the indices from the Dow Jones index family. It is composed of 65 leading U.S. companies: 30 stocks forming the Dow Jones Industrial Average index, 20 stocks from the Dow Jones Transportation index and 15 stocks from the Dow Jones Utility Average index. Importance of stock indices A stock market index shows an average performance of companies from a given section of the market. It is usually a weighted average, meaning that such factors as price of companies or their market capitalization are taken into consideration when calculating the index value. Stock indices are very useful for the financial market participants, as they instantly show the sentiments prevailing on a given market. They are also commonly used as a benchmark against portfolio performance, showing if a given portfolio has outperformed, or underperformed the market.
As of 2025, the ************************ was the oldest existing stock exchange, having been in operation for *** years. The youngest major exchange at this time was the **************, which has been in operation for ** years. Note these values refer to stock market operators, meaning historical exchanges in places like as the Amsterdam or Paris are counted from the founding of the Euronext, not from when the original stock exchange was founded in that city.
Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by three points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over one-third of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We propose a general double tree structured AR-GARCH model for the analysis of global equity index returns. The model extends previous approaches by incorporating (i) several multivariate thresholds in conditional means and volatilities of index returns and (ii) a richer specification for the impact of lagged foreign (US) index returns in each threshold. We evaluate the out-of-sample forecasting power of our model for eight major equity indices in comparison to some existing volatility models in the literature. We find strong evidence for more than one multivariate threshold (more than two regimes) in conditional means and variances of global equity index returns. Such multivariate thresholds are affected by foreign (US) lagged index returns and yield a higher out-of-sample predictive power for our tree structured model setting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
For the WIG, WIG20 and mWIG40 indices, no day, week or month statistically differs from the average level of the index, which indicates no anomalies. The situation is different only for the index of small companies. In the case of sWIG80, the mean values on Friday, week 5 and 6, and during January, February and June were statistically different at the level of 1%. The second week of the month also turns out to be statistically different at the significance level of 5%. The study of the mean in the case of sWIG80 indicates the same periods as previously indicated during the preliminary comparison of the means in the first part of the study.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.
https://data.gov.tw/licensehttps://data.gov.tw/license
The "Corporate Governance Evaluation System" is commissioned by the Stock Exchange and Gretai Securities Market to be conducted by this Foundation, and the evaluation indicators are available for companies or the public to refer to (Securities and Futures Institute).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Moroccan Stock Prices’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/aymanlafaz/moroccan-stock-prices on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Hey! we don't always have to forecast time series am I right ?
We use k-means to cluster about 70 moroccan stock prices to see their influence on market trends indicated by the MASI (Moroccan All Shares Index) index, for the case of time series k-means uses DTW (Dynamic Time Warping) metric which is a better indicator for similiarity for time series data
Our analysis leads us to find out about the companies that flourished despite the pandemic, the ones that did suffer but managed to recover and the ones that suffered the most.
The dataset contains one file with over 75 moroccan companies stocks and the MASI index
this dataset was scraped from LeBoursier
--- Original source retains full ownership of the source dataset ---
Sources:
German Central Bank (ed.), 1975: Deutsches Geld- und Bankwesen in Zahlen 1876 – 1975. (German monetary system and banking system in numbers 1876 – 1975) German Central Bank (ed.), different years: monthly reports of the German Central Bank, statistical part, interest rates German Central Bank (ed.), different years: Supplementary statistical booklets for the monthly reports of the German Central Bank 1959 – 1992, security statistics Reich Statistical Office (ed.), different years: Statistical yearbook of the German empire Statistical Office (ed.), 1985: Geld und Kredit. Index der Aktienkurse (Money and Credit. Index of share prices) – Lange Reihe; Fachserie 9, Reihe 2. Statistical Office (ed.), 1987: Entwicklung der Nahrungsmittelpreise von 1800 – 1880 in Deutschland. (Development of food prices in Germany 1800 – 1880) Statistical Office (ed.), 1987: Entwicklung der Verbraucherpreise (Development of consumer prices) seit 1881 in Deutschland. (Development of consumer prices since 1881 in Germany) Statistical Office (ed.), different years: Fachserie 17, Reihe 7, Preisindex für die Lebenshaltung (price index for costs of living) Donner, 1934: Kursbildung am Aktienmarkt; Grundlagen zur Konjunkturbeobachtung an den Effektenmärkten. (Prices on the stock market; groundwork for observation of economic cycles on the stock market) Homburger, 1905: Die Entwicklung des Zinsfusses in Deutschland von 1870 – 1903. (Development of the interest flow in Germany, 1870 – 1903) Voye, 1902: Über die Höhe der verschiedenen Zinsarten und ihre wechselseitige Abhängigkeit.(On the values of different types of interests and their interdependence).
In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.