40 datasets found
  1. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  2. T

    Kenya Stock Market (NSE20) Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya Stock Market (NSE20) Data [Dataset]. https://tradingeconomics.com/kenya/stock-market
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 25, 1997 - Jul 11, 2025
    Area covered
    Kenya
    Description

    Kenya's main stock market index, the Nairobi 20, fell to 2514 points on July 11, 2025, losing 0.10% from the previous session. Over the past month, the index has climbed 11.00% and is up 48.23% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on July of 2025.

  3. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20

    • ceicdata.com
    Updated Mar 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 [Dataset]. https://www.ceicdata.com/en/denmark/copenhagen-stock-exchange-index/index-copenhagen-stock-exchange-omx-copenhagen-ex-omxc-20
    Explore at:
    Dataset updated
    Mar 14, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2017 - Apr 1, 2018
    Area covered
    Denmark
    Variables measured
    Securities Exchange Index
    Description

    Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data was reported at 4,968.520 31Dec1995=100 in Nov 2018. This records a decrease from the previous number of 5,078.930 31Dec1995=100 for Oct 2018. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data is updated monthly, averaging 2,242.556 31Dec1995=100 from Dec 1999 (Median) to Nov 2018, with 228 observations. The data reached an all-time high of 5,648.470 31Dec1995=100 in Aug 2018 and a record low of 893.460 31Dec1995=100 in Sep 2002. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data remains active status in CEIC and is reported by Copenhagen Stock Exchange. The data is categorized under Global Database’s Denmark – Table DK.Z001: Copenhagen Stock Exchange: Index. On May 13, 2013 NASDAQ OMX performed changes to the KFMX indexes. The name was changeed from KFMX to OMX Copenhagen ex OMX Copenhagen 20, and the price algorithm was changed from NEWNX to Last Paid, meaning that the official closing price becomes the latest price regardless of closing best bid and ask prices.

  4. Monthly development S&P 500 Index 2018-2024

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development S&P 500 Index 2018-2024 [Dataset]. https://www.statista.com/statistics/697624/monthly-sandp-500-index-performance/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Dec 2024
    Area covered
    United States
    Description

    The S&P 500, an index of 500 publicly traded companies in the United States, closed at 5,881.63 points on the last trading day of December 2024. What is the S&P 500? The S&P 500 is a stock market index that tracks the evolution of 500 companies. In contrast to the Dow Jones Industrial Index, which measures the performance of thirty large U.S. companies, the S&P 500 shows the sentiments in the broader market. Publicly traded companies Companies on the S&P 500 are publicly traded, meaning that anyone can invest in them. A large share of adults in the United States invest in the stock market, though many of these are through a retirement account or mutual fund. While most people make a modest return, the most successful investors have made billions of U.S. dollars through investing.

  5. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean...

    • ceicdata.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean [Dataset]. https://www.ceicdata.com/en/united-states/consumer-sentiment-index-savings--retirement/csi-savings-stock-market-increase-probability-next-yr-mean
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2017 - Mar 1, 2018
    Area covered
    United States
    Description

    United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data was reported at 59.400 % in May 2018. This records a decrease from the previous number of 60.800 % for Apr 2018. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data is updated monthly, averaging 54.500 % from Jun 2002 (Median) to May 2018, with 191 observations. The data reached an all-time high of 66.700 % in Jan 2018 and a record low of 34.000 % in Mar 2009. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H026: Consumer Sentiment Index: Savings & Retirement. The question was: What do you think the percent change that this one thousand dollar investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now?

  6. Annual development Nasdaq 100 Index 1986-2024

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual development Nasdaq 100 Index 1986-2024 [Dataset]. https://www.statista.com/statistics/261720/annual-development-of-the-sunds-500-index/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2021, the Nasdaq 100 closed at 16,320.08 points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. The index value closed at 21,012.17 points in 2024, an increase of more than 4,000 points compared to its closing value for the previous year. What does the NASDAQ tell us? The Nasdaq 100 index is comprised of 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. Financial firms are represented by the NASDAQ Bank Index. A stock market index is a measurement of average performance of companies forming the index. It gives a snapshot of what investors are thinking at that particular moment. Other indices The Dow Jones Industrial Average gets more attention than the NASDAQ 100, though it only represents 30 companies. It’s best and worst days mark some of the major financial events of the past century. This helps to put more meaning behind events like Black Monday, the Wall Street crash of 1929, or the 2008 Financial Crisis, as well as the speed of their recoveries in financial markets.

  7. U

    Inflation Data

    • dataverse-staging.rdmc.unc.edu
    • dataverse.unc.edu
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linda Wang; Linda Wang (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    UNC Dataverse
    Authors
    Linda Wang; Linda Wang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a...

  8. Facebook Stock

    • kaggle.com
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliana Negrini de Araujo (2019). Facebook Stock [Dataset]. https://www.kaggle.com/datasets/jnegrini/fbstock/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juliana Negrini de Araujo
    Description

    Context

    Time series modelling for the prediction of stocks prices is a challenging task. Political events, market expectations and economic factors are just a few known factors that can impact financial market behaviour. The financial market is a complex, noisy, evolutionary and chaotic field of study that attracts many enthusiasts and researches — the first, usually driven by the economic benefit of it, the latter, inspired by the challenge of handling such complex data.

    This project aims to predict Facebook (FB) next day stock price direction with machine learning algorithms. Technical indicators and global market indexes are used, and their influence on the forecast accuracy is analysed.

    Content

    Daily values were retrieved (volume, open, close, low and high prices) from Yahoo! Finance website. For Facebook (FB), July 2012 was the earliest data available. The date range is July 2012 to November 2018.

    The closing price of current day C(t) and closing price from the previous day C(t-1) are compared to build the initial dataset. The objective is to define if the price trend is going up or down by analysing these two values. For each instance, a comparison was made and recorded. If the price is going up, C(t) > C(t-1), class “1” is assigned. Class “0” is assigned for the opposite case.

    • ID: Sample ID
    • Close: Closing value of previous day
    • Low: Lowest value of previous day
    • High: Highest value of previous day
    • Volume: Volume value of previous day

    Research was initiated to understand which features could help the model to forecast the stock direction. Three main routes were found: Lag features, Technical Indicators and Global Market Indexes. Below is an explanation of each group of features.

    Lag features are features that contain the closing price and direction of previous days and it is a common strategy for Time Series models. The following features were added:

    • C(t-5): Closing price of 5 days before
    • C(t-4): Closing price of 4 days before
    • C(t-3): Closing price of 3 days before
    • C(t-2): Closing price of 2 days before
    • C_up_4: Output 1 if closing price went up 4 days ago
    • C_up_3: Output 1 if closing price went up 3 days ago
    • C_up_2: Output 1 if closing price went up 2 days ago
    • C_up_1: Output 1 if closing price went up 1 day ago

    Technical indicators are used by researches and financial market analysts to support stock market trend forecasting. Common indicators retrieved from the literature were selected and calculated for Facebook stock. Techical Indicators added:

    • MA-10: Moving Average considering previous 10 days
    • MA-5: Moving Average considering previous 5 days
    • WMA-10: Weighted Moving Average considering previous 10 days
    • SO: Stochastic Oscillator
    • M: Momentum as the difference in closing price in a 10 days interval
    • SSO: Slow Stochastic Oscillator
    • EMA: Exponential Moving Average for a 10 day period
    • MACD_Sline_9: MACD Signal Line for a 9 day period
    • RSI: Relative Strength Index
    • CCI: Commodity Channel Index
    • ADO: Accumulation Distribution Oscillator

    Technical indicators provide a suggestion of the stock price movement. Additional features were created for each technical indicator by analysing its daily value and assigning a class according to their meaning. Class “1” is given if the indicator numerical value suggests upper trend, class “0” for a downtrend. In other words, financial market analysis is performed at a simplistic level, in the attempt to translate what the continuous value means.

    • MA-10>C: If MA-10 is higher than Closing price output 1
    • MA-5>C: If MA-5 is higher than Closing price output 1
    • WMA-10>C: If WMA-10 is higher than Closing price output 1
    • SO>SOt-1: Output is 1 if SO current value is higher than previous day
    • M>0: A positive momentum outputs 1
    • SSO>SSOt-1: SSO current value is higher than previous day
    • EMA>C: If EMA is higher than Closing price output 1
    • MACD>MACDt-1: If MACD current value is higher than previous day output 1
    • RSI70-30: If RSI is above 70, output 0. Values below 30 output is one. For values within this range it compares to previous day and outputs 1 if value has increased
    • CCI200-200: Similar to RSI, but if threshold set for 200 and -200.
    • ADO>ADOt-1: Output is 1 if ADO current value is higher than previous day

    For a given country or region, the stock market index characterises the performance of its financial market and the overall local economy. For this reason, the same day performance of these markets could contribute to the machine learning model predictions. Six global indexes were added as features, with their closing direction as up or down, class “1” or “0”, respectively. Data for these indexes (Nikkei, Hang Seng, All Ordinaries, Euronext 100, SSE and DAX) were also retrieved from Yahoo! Finance.

  9. Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 [Dataset]. https://www.ceicdata.com/en/denmark/copenhagen-stock-exchange-index/index-copenhagen-stock-exchange-gross-omx-copenhagen-ex-omxc-20
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2017 - Apr 1, 2018
    Area covered
    Denmark
    Variables measured
    Securities Exchange Index
    Description

    Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data was reported at 8,112.710 31Dec1995=100 in Oct 2018. This records a decrease from the previous number of 8,752.230 31Dec1995=100 for Sep 2018. Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data is updated monthly, averaging 4,294.127 31Dec1995=100 from Nov 2005 (Median) to Oct 2018, with 156 observations. The data reached an all-time high of 8,991.170 31Dec1995=100 in Aug 2018 and a record low of 1,886.816 31Dec1995=100 in Mar 2009. Denmark Index: Copenhagen Stock Exchange: Gross: OMX Copenhagen Ex OMXC 20 data remains active status in CEIC and is reported by Copenhagen Stock Exchange. The data is categorized under Global Database’s Denmark – Table DK.Z001: Copenhagen Stock Exchange: Index. On May 13, 2013 NASDAQ OMX performed changes to the KFMX indexes. The name was changeed from KFMX to OMX Copenhagen ex OMX Copenhagen 20, and the price algorithm was changed from NEWNX to Last Paid, meaning that the official closing price becomes the latest price regardless of closing best bid and ask prices.

  10. f

    Model performance metrics.

    • plos.figshare.com
    xls
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu (2024). Model performance metrics. [Dataset]. http://doi.org/10.1371/journal.pone.0299164.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.

  11. Annual performance of the Dow Jones Composite Index 2000-2024

    • statista.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual performance of the Dow Jones Composite Index 2000-2024 [Dataset]. https://www.statista.com/statistics/189758/dow-jones-composite-index-closing-year-end-values-since-2000/
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Dow Jones Composite Index finished the year 2024 at 13,391.71 points, an increase compared to the previous year. Even with the economic effects of the global coronavirus (COVID-19) pandemic, 2021 had the highest point of the index in the past two decades. What is Dow Jones Composite Index? The Dow Jones Composite Index is one of the indices from the Dow Jones index family. It is composed of 65 leading U.S. companies: 30 stocks forming the Dow Jones Industrial Average index, 20 stocks from the Dow Jones Transportation index and 15 stocks from the Dow Jones Utility Average index. Importance of stock indices A stock market index shows an average performance of companies from a given section of the market. It is usually a weighted average, meaning that such factors as price of companies or their market capitalization are taken into consideration when calculating the index value. Stock indices are very useful for the financial market participants, as they instantly show the sentiments prevailing on a given market. They are also commonly used as a benchmark against portfolio performance, showing if a given portfolio has outperformed, or underperformed the market.

  12. Age of leading exchanges worldwide 2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Age of leading exchanges worldwide 2025 [Dataset]. https://www.statista.com/statistics/763954/largest-world-exchanges-by-age/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    Worldwide
    Description

    As of 2025, the ************************ was the oldest existing stock exchange, having been in operation for *** years. The youngest major exchange at this time was the **************, which has been in operation for ** years. Note these values refer to stock market operators, meaning historical exchanges in places like as the Amsterdam or Paris are counted from the founding of the Euronext, not from when the original stock exchange was founded in that city.

  13. Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025...

    • ai-chatbox.pro
    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F7463%2Fesg-and-impact-investing%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by three points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over one-third of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.

  14. J

    Estimating and predicting multivariate volatility thresholds in global stock...

    • journaldata.zbw.eu
    • jda-test.zbw.eu
    txt
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Audrino; Fabio Trojani; Francesco Audrino; Fabio Trojani (2022). Estimating and predicting multivariate volatility thresholds in global stock markets (replication data) [Dataset]. http://doi.org/10.15456/jae.2022319.0711191099
    Explore at:
    txt(278036), txt(1255)Available download formats
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Francesco Audrino; Fabio Trojani; Francesco Audrino; Fabio Trojani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We propose a general double tree structured AR-GARCH model for the analysis of global equity index returns. The model extends previous approaches by incorporating (i) several multivariate thresholds in conditional means and volatilities of index returns and (ii) a richer specification for the impact of lagged foreign (US) index returns in each threshold. We evaluate the out-of-sample forecasting power of our model for eight major equity indices in comparison to some existing volatility models in the literature. We find strong evidence for more than one multivariate threshold (more than two regimes) in conditional means and variances of global equity index returns. Such multivariate thresholds are affected by foreign (US) lagged index returns and yield a higher out-of-sample predictive power for our tree structured model setting.

  15. f

    Statistics of ‘diffrate’.

    • figshare.com
    xls
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu (2024). Statistics of ‘diffrate’. [Dataset]. http://doi.org/10.1371/journal.pone.0299164.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.

  16. m

    Parameters and statistics of models made for selected companies of the...

    • mostwiedzy.pl
    xlsx
    Updated May 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piotr Kasprzak; Kamil Lewandowski (2021). Parameters and statistics of models made for selected companies of the Warsaw Stock Exchange [Dataset]. http://doi.org/10.34808/jdn6-m930
    Explore at:
    xlsx(92278)Available download formats
    Dataset updated
    May 10, 2021
    Authors
    Piotr Kasprzak; Kamil Lewandowski
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    For the WIG, WIG20 and mWIG40 indices, no day, week or month statistically differs from the average level of the index, which indicates no anomalies. The situation is different only for the index of small companies. In the case of sWIG80, the mean values on Friday, week 5 and 6, and during January, February and June were statistically different at the level of 1%. The second week of the month also turns out to be statistically different at the significance level of 5%. The study of the mean in the case of sWIG80 indicates the same periods as previously indicated during the preliminary comparison of the means in the first part of the study.

  17. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces

    • plos.figshare.com
    ai
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yonatan Berman; Eshel Ben-Jacob; Xin Zhang; Yoash Shapira (2023). Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces [Dataset]. http://doi.org/10.1371/journal.pone.0152487
    Explore at:
    aiAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yonatan Berman; Eshel Ben-Jacob; Xin Zhang; Yoash Shapira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  18. Corporate Governance Evaluation Index Explanation (Institute for Securities...

    • data.gov.tw
    csv
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C. (2025). Corporate Governance Evaluation Index Explanation (Institute for Securities and Futures) [Dataset]. https://data.gov.tw/en/datasets/11686
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset provided by
    Securities and Futures Bureauhttps://www.sfb.gov.tw/en/
    Authors
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C.
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The "Corporate Governance Evaluation System" is commissioned by the Stock Exchange and Gretai Securities Market to be conducted by this Foundation, and the evaluation indicators are available for companies or the public to refer to (Securities and Futures Institute).

  19. A

    ‘Moroccan Stock Prices’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Moroccan Stock Prices’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-moroccan-stock-prices-8491/6ce25387/?iid=011-406&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Morocco
    Description

    Analysis of ‘Moroccan Stock Prices’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/aymanlafaz/moroccan-stock-prices on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Hey! we don't always have to forecast time series am I right ?

    We use k-means to cluster about 70 moroccan stock prices to see their influence on market trends indicated by the MASI (Moroccan All Shares Index) index, for the case of time series k-means uses DTW (Dynamic Time Warping) metric which is a better indicator for similiarity for time series data

    Our analysis leads us to find out about the companies that flourished despite the pandemic, the ones that did suffer but managed to recover and the ones that suffered the most.

    Content

    The dataset contains one file with over 75 moroccan companies stocks and the MASI index

    Data Source:

    this dataset was scraped from LeBoursier

    --- Original source retains full ownership of the source dataset ---

  20. d

    Rate of return and risk of german stock investments and annuity bonds 1870...

    • da-ra.de
    Updated 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Marowietz (2009). Rate of return and risk of german stock investments and annuity bonds 1870 to 1992 [Dataset]. http://doi.org/10.4232/1.8384
    Explore at:
    Dataset updated
    2009
    Dataset provided by
    GESIS Data Archive
    da|ra
    Authors
    Markus Marowietz
    Time period covered
    1870 - 1992
    Description

    Sources:

    German Central Bank (ed.), 1975: Deutsches Geld- und Bankwesen in Zahlen 1876 – 1975. (German monetary system and banking system in numbers 1876 – 1975) German Central Bank (ed.), different years: monthly reports of the German Central Bank, statistical part, interest rates German Central Bank (ed.), different years: Supplementary statistical booklets for the monthly reports of the German Central Bank 1959 – 1992, security statistics Reich Statistical Office (ed.), different years: Statistical yearbook of the German empire Statistical Office (ed.), 1985: Geld und Kredit. Index der Aktienkurse (Money and Credit. Index of share prices) – Lange Reihe; Fachserie 9, Reihe 2. Statistical Office (ed.), 1987: Entwicklung der Nahrungsmittelpreise von 1800 – 1880 in Deutschland. (Development of food prices in Germany 1800 – 1880) Statistical Office (ed.), 1987: Entwicklung der Verbraucherpreise (Development of consumer prices) seit 1881 in Deutschland. (Development of consumer prices since 1881 in Germany) Statistical Office (ed.), different years: Fachserie 17, Reihe 7, Preisindex für die Lebenshaltung (price index for costs of living) Donner, 1934: Kursbildung am Aktienmarkt; Grundlagen zur Konjunkturbeobachtung an den Effektenmärkten. (Prices on the stock market; groundwork for observation of economic cycles on the stock market) Homburger, 1905: Die Entwicklung des Zinsfusses in Deutschland von 1870 – 1903. (Development of the interest flow in Germany, 1870 – 1903) Voye, 1902: Über die Höhe der verschiedenen Zinsarten und ihre wechselseitige Abhängigkeit.(On the values of different types of interests and their interdependence).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
Organization logo

Share of Americans investing money in the stock market 1999-2024

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
1999 - 2024
Area covered
United States
Description

In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

Search
Clear search
Close search
Google apps
Main menu