https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Instagram data-download example dataset
In this repository you can find a data-set consisting of 11 personal Instagram archives, or Data-Download Packages (DDPs).
How the data was generated
These Instagram accounts were all new and generated by a group of researchers who were interested to figure out in detail the structure and variety in structure of these Instagram DDPs. The participants user the Instagram account extensively for approximately a week. The participants also intensively communicated with each other so that the data can be used as an example of a network.
The data was primarily generated to evaluate the performance of de-identification software. Therefore, the text in the DDPs particularly contain many randomly chosen (Dutch) first names, phone numbers, e-mail addresses and URLS. In addition, the images in the DDPs contain many faces and text as well. The DDPs contain faces and text (usernames) of third parties. However, only content of so-called `professional accounts' are shared, such as accounts of famous individuals or institutions who self-consciously and actively seek publicity, and these sources are easily publicly available. Furthermore, the DDPs do not contain sensitive personal data of these individuals.
Obtaining your Instagram DDP
After using the Instagram accounts intensively for approximately a week, the participants requested their personal Instagram DDPs by using the following steps. You can follow these steps yourself if you are interested in your personal Instagram DDP.
Instagram then delivered the data in a compressed zip folder with the format username_YYYYMMDD.zip (i.e., Instagram handle and date of download) to the participant, and the participants shared these DDPs with us.
Data cleaning
To comply with the Instagram user agreement, participants shared their full name, phone number and e-mail address. In addition, Instagram logged the i.p. addresses the participant used during their active period on Instagram. After colleting the DDPs, we manually replaced such information with random replacements such that the DDps shared here do not contain any personal data of the participants.
How this data-set can be used
This data-set was generated with the intention to evaluate the performance of the de-identification software. We invite other researchers to use this data-set for example to investigate what type of data can be found in Instagram DDPs or to investigate the structure of Instagram DDPs. The packages can also be used for example data-analyses, although no substantive research questions can be answered using this data as the data does not reflect how research subjects behave `in the wild'.
Authors
The data collection is executed by Laura Boeschoten, Ruben van den Goorbergh and Daniel Oberski of Utrecht University. For questions, please contact l.boeschoten@uu.nl.
Acknowledgments
The researchers would like to thank everyone who participated in this data-generation project.
This dataset is designed to explore multistreaming social media video as a research method used to collect semi-structured interview data. The data are provided by Dr Karen E. Sutherland and Ms Krisztina Morris from the School of Business and Creative Industries at the University of the Sunshine Coast in Queensland, Australia. The dataset is drawn from the publicly available video recording of an interview undertaken as part of the research project called: ‘Like, Share, Follow’, a multistreaming show, featuring Dr Sutherland interviewing university graduates about their career journeys, that is broadcast across Facebook, LinkedIn, and Twitter and later uploaded to YouTube. This dataset examines how multistreaming video interview data can be used to answer research questions and the benefits and challenges this specific method of data collection can pose in the process of data analysis. The video example is accompanied by a teaching guide and a student guide.
Salutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.
We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.
What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.
Products: API Suite Web UI Full and Custom Data Feeds
Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new “look alike” prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and we’ll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (“Cleaning/Hygiene”) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Media population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Media. The dataset can be utilized to understand the population distribution of Media by age. For example, using this dataset, we can identify the largest age group in Media.
Key observations
The largest age group in Media, PA was for the group of age 25 to 29 years years with a population of 841 (14.33%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Media, PA was the Under 5 years years with a population of 58 (0.99%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Media Population by Age. You can refer the same here
The purpose of the dataset is to enable the replication of results as reported in the article: Bonsaksen, T., Price, D., Lamph, G., Kabelenga, I., & Geirdal, A. Ø. (2025). Sleep problems were unrelated to social media use in the late COVID-19 pandemic phase: A cross-national study. PLOS ONE 20(1): e0318507. https://doi.org/10.1371/journal.pone.0318507. The data on sleep problems, psychosocial stress and social media use is uploaded as an SPSS file. Additional information to facilitate using the data can be found in the ReadMe file. The article aimed to explore the relationship between social media use and sleep problems in a cross-national sample two years after the pandemic began. It involved 1405 adults from four countries who completed an online survey. Statistical analyses included independent samples t-tests, Chi-Squared tests, and logistic regression. Among the 858 participants (61.1%) who reported recent sleep problems, 41.1% (353 individuals) attributed these issues to their COVID-19 experiences. Adjusting for age, gender, employment, and psychological distress showed that more hours of social media use were not significantly linked to sleep problems. However, being older, female, employed, and experiencing higher psychological distress were associated with more sleep issues.
This dataset comprises information gathered in an Excel file for conducting a visibility analysis on a set of keywords related to artificial intelligence in digital media outlets. The data is sourced from a sample of European, British, and American media outlets, specifically the top five ranked media in the SCImago Media Rankings (SMR) of European countries with populations exceeding ten million, along with the United Kingdom and the United States.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains a labeled collection of approximately 50,000 social media posts in various Arabic dialects. Each post has been manually annotated with sentiment labels, providing a rich resource for natural language processing and sentiment analysis research.
UM6P College of Computing
The dataset is provided in a CSV format with the following columns:
- Post_ID
: Integer
- Text
: String
- Sentiment
: String (Positive, Negative, Neutral)
This dataset is ideal for tasks such as: - Training sentiment analysis models - Studying sentiment trends in Arabic social media - Exploring the linguistic characteristics of Arabic dialects - Benchmarking sentiment analysis tools
Post_ID | Text | Sentiment |
---|---|---|
1 | "هذا المنتج رائع جدًا وأحببته كثيرًا" | Positive |
2 | "لم يعجبني هذا الفيلم، كان مملًا جدًا" | Negative |
3 | "الطقس اليوم عادي، لا يوجد شيء مميز" | Neutral |
Please refer to the dataset license included in the dataset files for information on usage rights and restrictions.
An open access NLP dataset for Arabic dialects: data collection, labeling, and model construction, Elmehdi Boujou, Hamza Chataoui, Abdellah El Mekki, Saad Benjelloun, Ikram Chairi and Ismail Berrada MENACIS 2020 conference, In press.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Alaska Geochemical Database Version 3.0 (AGDB3) contains new geochemical data compilations in which each geologic material sample has one best value determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database Version 2.0 before it, the AGDB3 was created and designed to compile and integrate geochemical data from Alaska to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, element concentrations and associations, environmental impact assessments, and studies in public health associated with geology. This relational database, created from databases and published datasets of the U.S. Geological Survey (USGS), Atomic Energy Commission National Uranium Resource Evaluation (NURE), Alaska Division of Geological & Geophysical Surveys (DGGS), U.S. Bureau of Mines, and U.S. Bureau of Land Management serves as a data archive in support ...
In 2023, Meta Platforms had a total annual revenue of over 134 billion U.S. dollars, up from 116 billion in 2022. LinkedIn reported its highest annual revenue to date, generating over 15 billion USD, whilst Snapchat reported an annual revenue of 4.6 billion USD.
Comprehensive dataset of 14,108 Media companies in United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.
Teens and social media
As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
South African Advertising Research Foundation (SAARF) undertakes the All Media and Products Survey (AMPS) is to collect data on media usage of South African, as well as their ownership or usage of a selection of products and services.
The survey has national coverage
Units of analysis in the survey include individuals and households
The survey covered adults aged 16 years or older resident in private households, or hotels, residential hotels and similar accommodation in the Republic of South Africa.
Sample survey data [ssd]
The universe from which the AMPS sample is drawn, comprises adults aged 16 years or older in South Africa. In the case of each racial group, certain areas were excluded from consideration, as containing no persons or a negligible number of persons in a given group. A multistage, stratified, quasi-probability design was employed. This study is based on a full annual sample. The data were collected by personal, in-home interviews.
Face-to-face [f2f]
Unlock the power of ready-to-use data sourced from developer communities and repositories with Developer Community and Code Datasets.
Data Sources:
GitHub: Access comprehensive data about GitHub repositories, developer profiles, contributions, issues, social interactions, and more.
StackShare: Receive information about companies, their technology stacks, reviews, tools, services, trends, and more.
DockerHub: Dive into data from container images, repositories, developer profiles, contributions, usage statistics, and more.
Developer Community and Code Datasets are a treasure trove of public data points gathered from tech communities and code repositories across the web.
With our datasets, you'll receive:
Choose from various output formats, storage options, and delivery frequencies:
Why choose our Datasets?
Fresh and accurate data: Access complete, clean, and structured data from scraping professionals, ensuring the highest quality.
Time and resource savings: Let us handle data extraction and processing cost-effectively, freeing your resources for strategic tasks.
Customized solutions: Share your unique data needs, and we'll tailor our data harvesting approach to fit your requirements perfectly.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is trusted by Fortune 500 companies and adheres to GDPR and CCPA standards.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Empower your data-driven decisions with Oxylabs Developer Community and Code Datasets!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This spreadsheet contains a collection of over 230 data visualisations about public finances from media organisations, journalists, civil society organisations, advocacy groups, civic hackers, companies and public institutions. In order to build the collection I started with a collection of projects derived from another study mapping “open budget data” on digital media (Gray, 2015). Over 65% of the 120 fiscal data projects identified through the study used visualisations to present information about public finances. Examples were also incorporated from other lists, including relevant items from a database of 466 projects from The Guardian and the New York Times from between 2000 and 2015 (Rooze, 2015), as well as from expert data visualisation blogs such as Infosthetics and Visual Complexity. Further examples were solicited from expert mailing lists, forums and targeted outreach via email and social media. Analyses of the data visualisations are forthcoming in several publications. The collection will continue to be updated periodically. If you have suggestions for projects to add, please get in touch: http://jonathangray.org/contact/
References Gray, J. (2015) "Open Budget Data: Mapping the Landscape". Available at: http://dx.doi.org/10.2139/ssrn.2654878Rooze, M. (2015) "News Graphics Collection". Available at: http://collection.marijerooze.nl/
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
Our dataset offers a unique blend of attributes from YouTube and Google Maps, empowering users with comprehensive insights into online content and geographical reach. Let's delve into what makes our data stand out:
Unique Attributes: - From YouTube: Detailed video information including title, description, upload date, video ID, and channel URL. Video metrics such as views, likes, comments, and duration are also provided. - Creator Info: Access author details like name and channel URL. - Channel Information: Gain insights into channel title, description, location, join date, and visual branding elements like logo and banner URLs. - Channel Metrics: Understand a channel's performance with metrics like total views, subscribers, and video count. - Google Maps Integration: Explore business ratings from Google My Business and location data from Google Maps.
Data Sourcing: - Our data is meticulously sourced from publicly available information on YouTube and Google Maps, ensuring accuracy and reliability.
Primary Use-Cases: - Marketing: Analyze video performance metrics to optimize content strategies. - Research: Explore trends in creator behavior and audience engagement. - Location-Based Insights: Utilize Google Maps data for market research, competitor analysis, and location-based targeting.
Fit within Broader Offering: - This dataset complements our broader data offering by providing rich insights into online content consumption and geographical presence. It enhances decision-making processes across various industries, including marketing, advertising, research, and business intelligence.
Usage Examples: - Marketers can identify popular video topics and optimize advertising campaigns accordingly. - Researchers can analyze audience engagement patterns to understand viewer preferences. - Businesses can assess their Google My Business ratings and geographical distribution for strategic planning.
With scalable solutions and high-quality data, our dataset offers unparalleled depth for extracting actionable insights and driving informed decisions in the digital landscape.
Social Media Analytics Market Size 2025-2029
The social media analytics market size is forecast to increase by USD 21.2 billion, at a CAGR of 35.2% between 2024 and 2029.
The market is experiencing significant growth, driven by the expanding availability and complexity of social media data. Businesses increasingly recognize the value of social media insights to inform marketing strategies, enhance customer engagement, and gauge brand reputation. In response, social media platforms continue to roll out advanced targeting options, enabling more precise audience segmentation and personalized messaging. However, the surging use of social media data also presents challenges. Interpreting unstructured data from various sources remains a formidable task, requiring sophisticated analytics tools and expertise.
Companies must navigate these complexities to effectively harness the power of social media analytics and stay competitive in today's digital landscape. To succeed, organizations need to invest in advanced analytics solutions, cultivate data literacy skills, and establish clear data governance policies. By addressing these challenges, businesses can unlock valuable insights from social media data and capitalize on emerging opportunities in this dynamic market.
What will be the Size of the Social Media Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market continues to evolve, offering valuable insights for businesses across various sectors. Hashtag tracking and sentiment classification help organizations understand public perception and engagement with their brand. Engagement metrics, share of voice, and trend analysis algorithms provide valuable data for brand reputation management and customer journey mapping. Social media ROI, influencer marketing metrics, and sentiment scoring offer insights into the effectiveness of advertising campaigns. User behavior patterns, predictive modeling, and anomaly detection enable businesses to anticipate trends and respond to crises in real-time. Social media listening, lead generation attribution, influencer identification, and customer satisfaction scores provide actionable insights for community management and crisis communication management.
Data visualization dashboards and social listening tools facilitate effective audience segmentation and conversational AI. Reach forecasting, content performance, keyword analysis, and campaign effectiveness metrics offer valuable insights for optimizing social media strategies. Platform-specific insights enable businesses to tailor their approach to each social media channel. According to recent market research, the market is expected to grow by over 15% annually, reflecting the increasing importance of social media data for businesses. For instance, a retail company used social media listening tools to monitor customer conversations and identified a trend in customer complaints about product packaging. The company responded by redesigning the packaging, resulting in a 12% increase in sales.
This example highlights the potential impact of social media analytics on business performance.
How is this Social Media Analytics Industry segmented?
The social media analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
End-user
Retail
Government
Media and entertainment
Travel
Others
Application
Sales and marketing management
Customer experience management
Competitive intelligence
Risk management
Public safety and law enforcement
Deployment
On-premises
Cloud
Type
Predictive analytics
Prescriptive analytics
Descriptive analytics
Diagnostics analytics
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By End-user Insights
The retail segment is estimated to witness significant growth during the forecast period.
Social media analytics plays a pivotal role in retail marketing, enabling businesses to track and analyze customer engagement, sentiment, and trends in real-time. Tools such as hashtag tracking, sentiment classification, and engagement metrics help retailers understand their audience's preferences and behavior patterns. Share of voice and trend analysis algorithms provide insights into market dynamics and brand reputation management. Customer journey mapping and social media ROI measurement allow businesses to optimize their marketing strategies and improve sales. Influencer marketing metrics, sentiment scoring, and advertising
During a 2025 survey among marketers worldwide, around 83 percent reported using Facebook for marketing purposes. Instagram and LinkedIn followed, respectively mentioned by 78 and 69 percent of the respondents. The global social media marketing segment According to the same study, 60 percent of responding marketers intended to increase their organic use of YouTube for marketing purposes throughout that year. LinkedIn and Instagram followed with similar shares, rounding up the top three social media platforms attracting a planned growth in organic use among global marketers in 2025. Their main driver is increasing brand exposure and traffic, which led the ranking of benefits of social media marketing worldwide. Social media for B2B marketing Social media platform adoption rates among business-to-consumer (B2C) and business-to-business (B2B) marketers vary according to each subsegment's focus. While B2C professionals prioritize Facebook and Instagram, both run by Meta, Inc., due to their popularity among online audiences, B2B marketers concentrate their endeavors on Microsoft-owned LinkedIn due to its goal to connect people and companies in a corporate context.
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.