Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Facebook
TwitterAs of April 26, 2023, around 27 percent of total COVID-19 deaths in the United States have been among adults 85 years and older, despite this age group only accounting for two percent of the U.S. population. This statistic depicts the distribution of total COVID-19 deaths in the United States as of April 26, 2023, by age group.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Facebook
TwitterAs of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistics for the percent change in death rate.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, area, population density, latitude, and longitude data were obtained from Johns Hopkins University alongside Covid-19 data [23].
Facebook
TwitterAs of February 4, 2022, in the age group 75 to 84 years old COVID-19 was involved in the deaths of 32,780 males and 23,390 females in the United Kingdom. Furthermore, since the pandemic started over 72 thousand deaths in the UK among those aged 85 years and above involved COVID-19. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistics for the death rates γ1 and γ2, as well as the date of the change tγ.
Facebook
TwitterAs of May 2, 2023, of 34,206 COVID-19 cases deceased in Canada, around 4,058 were aged 60 to 69 years. This statistic shows the number of COVID-19 deaths in Canada as of May 2, 2023, by age.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
TwitterThe seven-day average number of COVID-19 deaths in the U.S. decreased significantly from April to July 2020, but it remained higher than in other countries. Seven-day rolling averages are used to adjust for administrative delays in the reporting of deaths by authorities, commonly over weekends.
The challenges of tracking and reporting the disease The U.S. confirmed its first coronavirus case in mid-January 2020 – the virus was detected in a passenger who arrived in Seattle from China. Since that first case, around 945 people have died every day from COVID-19 in the United States as of August 23, 2020. In total, the U.S. has recorded more coronavirus deaths than any other country worldwide. Accurately tracking the number of COVID-19 deaths has proved complicated, with countries having different rules for what deaths to include in their official figures. Some nations have even changed which deaths they can attribute to the disease during the pandemic.
Young people urged to act responsibly Between January and May 2020, case fatality rates among COVID-19 patients in the United States increased with age, highlighting the particular risks faced by the elderly. However, COVID-19 is not only a disease that affects older adults. Surges in the number of new cases throughout July 2020 were blamed on young people. The World Health Organization has urged young people not to become complacent, reminding them to maintain social distancing guidelines and take precautions to protect themselves and others.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.
Facebook
TwitterThe United States have recently become the country with the most reported cases of 2019 Novel Coronavirus (COVID-19). This dataset contains daily updated number of reported cases & deaths in the US on the state and county level, as provided by the Johns Hopkins University. In addition, I provide matching demographic information for US counties.
The dataset consists of two main csv files: covid_us_county.csv and us_county.csv. See the column descriptions below for more detailed information. In addition, I've added US county shape files for geospatial plots: us_county.shp/dbf/prj/shx.
covid_us_county.csv: COVID-19 cases and deaths which will be updated daily. The data is provided by the Johns Hopkins University through their excellent github repo. I combined the separate "confirmed cases" and "deaths" files into a single table, removed a few (I think to be) redundant geo identifier columns, and reshaped the data into long format with a single date column. The earliest recorded cases are from 2020-01-22.
us_counties.csv: Demographic information on the US county level based on the (most recent) 2014-18 release of the Amercian Community Survey. Derived via the great tidycensus package.
COVID-19 dataset covid_us_county.csv:
fips: County code in numeric format (i.e. no leading zeros). A small number of cases have NA values here, but can still be used for state-wise aggregation. Currently, this only affect the states of Massachusetts and Missouri.
county: Name of the US county. This is NA for the (aggregated counts of the) territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and Virgin Islands.
state: Name of US state or territory.
state_code: Two letter abbreviation of US state (e.g. "CA" for "California"). This feature has NA values for the territories listed above.
lat and long: coordinates of the county or territory.
date: Reporting date.
cases & deaths: Cumulative numbers for cases & deaths.
Demographic dataset us_counties.csv:
fips, county, state, state_code: same as above. The county names are slightly different, but mostly the difference is that this dataset has the word "County" added. I recommend to join on fips.
male & female: Population numbers for male and female.
population: Total population for the county. Provided as convenience feature; is always the sum of male + female.
female_percentage: Another convenience feature: female / population in percent.
median_age: Overall median age for the county.
Data provided for educational and academic research purposes by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).
The github repo states that:
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.
Facebook
TwitterThe death rate in New York City for adults aged 75 years and older was around 4,135 per 100,000 people as of December 22, 2022. The risk of developing more severe illness from COVID-19 increases with age, and the virus also poses a particular threat to people with underlying health conditions.
What is the death toll in NYC? The first coronavirus-related death in New York City was recorded on March 11, 2020. Since then, the total number of confirmed deaths has reached 37,452 while there have been 2.6 million positive tests for the disease. The number of daily new deaths in New York City has fallen sharply since nearly 600 residents lost their lives on April 7, 2020. A significant number of fatalities across New York State have been linked to long-term care facilities that provide support to vulnerable elderly adults and individuals with physical disabilities.
The impact on the counties of New York State Nearly every county in the state of New York has recorded at least one death due to the coronavirus. Outside of New York City, the counties of Nassau, Suffolk, and Westchester have confirmed over 11,500 deaths between them. When analyzing the ratio of deaths to county population, Rockland had one of the highest COVID-19 death rates in New York State in 2021. The county, which has approximately 325,700 residents, had a death rate of around 29 per 10,000 people in April 2021.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20
Facebook
TwitterAs of April 26, 2023, the number of both confirmed and presumptive positive cases of the COVID-19 disease reported in the United States had reached over 104 million with over 1.1 million deaths reported among these cases.
Coronavirus deaths by age in the U.S. Daily new cases of COVID-19 hit record highs in the United States at the beginning of 2022. Underlying health conditions can worsen cases of coronavirus, and case fatality rates among confirmed COVID-19 patients increase with age. The highest number of deaths from COVID-19 have been among those aged 85 years and older, with this age group accounting for over 300 thousand deaths.
Where has this coronavirus come from? Coronaviruses are a large group of viruses transmitted between animals and people that cause illnesses ranging from the common cold to more severe diseases. The novel coronavirus that is currently infecting humans was already circulating among certain animal species. The first human case of this new coronavirus strain was reported in China at the end of December 2019. The coronavirus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its associated disease is known as COVID-19.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The winter mortality index (WMI) is a measure expressed as a ratio of the difference in all cause mortality during winter months (December to March) compared to the average in the non winter months (the preceding August to November and following April to July).The terminology used to describe this indicator has changed to provide clearer explanation of what the analysis represents. The measures have been renamed to winter deaths compared to non winter deaths (previously excess winter deaths) and winter mortality index (WMI) (previously excess winter mortality index). There have been no methodology changes.
RationaleThe purpose of the winter mortality measure is to compare the number of deaths that occurred in the winter period (December to March) with the average of the non winter periods (August to November and April to July). Winter mortality is not solely a reflection of temperature, but of other factors as well. These include respiratory diseases and pressure on services, which have been more intense than usual during and following the height of the pandemic (1).It is an important measure as it allows users to assess whether policies are having an impact on mortality risks during the winter period (2). (1) Office for National Statistics (ONS), released 19 January 2023, ONS website, statistical bulletin, Winter mortality in England and Wales: 2021 to 2022 (provisional) and 2020 to 2021 (final). (2) Office for National Statistics (ONS), released 19 January 2023, ONS website, QMI, Winter mortality in England and Wales QMI: 19 January 2023Definition of numeratorTotal number of winter deaths for all ages in defined year 20xx/20xx+1 (number of deaths occurring in December in year 20xx and January to March in 20xx plus 1) minus half the number of deaths in the non winter months (preceding August to November in year 20xx and following April to July in year 20xx plus 1) and registered by 31 December 20xx plus 1.Definition of denominatorThe average number of deaths for all ages ( in defined year 20xx/20xx plus 1) occurring in the non winter months, i.e. the total number of deaths occurring in the preceding August to November in year 20xx and the following April to July in year 20xx plus 1 divided by two and registered by 31 December 20xx plus 1.CaveatsIn 2020, the coronavirus (COVID 19) pandemic led to a large increase of deaths mostly in the non-winter months of April to July 2020. This has impacted the WMI for 2019 to 2020. Because we rely on using the difference between deaths occurring in the winter and the average of non winter months; specifically, the scale of COVID 19 deaths during non winter months has fundamentally disturbed the data time series and so data for 2019 to 2020 should be interpreted with caution.The Office for National Statistics (ONS) Annual Births and Mortality Extract is based on registered deaths (Date of registration) and the Winter deaths compared to non winter deaths and WMI calculations are based on the date of death occurrences (Date of death). It is possible that a number of deaths might not have been registered when the data were released and this could vary between areas. This indicator only includes deaths which are registered by the end of the calendar year 20xx plus 1.Data published in the PHOF will differ from published ONS results which uses an extract of mortality data taken approximately five months after the annual ONS mortality extract is taken, in order to give more time for late registrations (for example, deaths that were referred to a coroner) to appear in the data.The WMI will be partly dependent on the proportion of older people in the population as most winter deaths effect older people (there is no standardisation in this calculation by age or any other factor).This winter period was selected as they are the months which over the last 50 years have displayed above average monthly mortality. However, if mortality starts to increase prior to this, for example in November, the number of deaths in the non winter period will increase, which in turn will decrease the estimate of winter deaths compared to non winter deaths.The counts are presented rounded to the nearest 10, in line with how data is presented by the ONS.
Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.