https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Family Income in the United States (MEFAINUSA672N) from 1953 to 2024 about family, median, income, real, and USA.
In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2024 about personal income, personal, median, income, real, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Great Valley town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/great-valley-ny-median-household-income-by-race-trends.jpeg" alt="Great Valley, New York median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Great Valley town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Rock Creek town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/rock-creek-wi-median-household-income-by-race-trends.jpeg" alt="Rock Creek, Wisconsin median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rock Creek town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Canton town, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Canton town decreased by $1,960 (2.62%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Canton town median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Household Income: Gross Disposable Income data was reported at 421,840.000 AUD mn in Dec 2024. This records a decrease from the previous number of 435,293.000 AUD mn for Sep 2024. Australia Household Income: Gross Disposable Income data is updated quarterly, averaging 72,770.500 AUD mn from Sep 1959 (Median) to Dec 2024, with 262 observations. The data reached an all-time high of 435,293.000 AUD mn in Sep 2024 and a record low of 2,931.000 AUD mn in Jun 1960. Australia Household Income: Gross Disposable Income data remains active status in CEIC and is reported by Australian Bureau of Statistics. The data is categorized under Global Database’s Australia – Table AU.A287: SNA08: Household Saving Ratio and Household Income.
Dataset consisting of inequality measures for 46 nation states and a global bibliography of all known household expenditure surveys covering the period roughly 1880-1960. Each entry notes when and where the survey was carried out and salient characteristics of the survey such as number of households, whether income and/or expenditure data are collected etc. These bibliographies are organised by six world regions and then by 118 nation states. For a sub-set of the most useful surveys we have estimated various inequality measures from the published data for 46 nation states, organised by world region.This project will calculate new estimates of world inequality in the period from the end of the nineteenth century until the 1960s, based on the results of household expenditure surveys. Our investigations have located a vast cache of household expenditure surveys for the period. Thus far, we have identified around 800 household surveys from around the world, carried out between the 1880s and 1960s, of which around half are of sufficient scope as to be potentially useful for the investigation of inequality. We will extract the reported demographic and expenditure data by income group from these reports and use them to estimate parameters of the income distribution. Using these estimates, we will investigate the changing nature of inequality within a number of key nation states, and also investigate the time path and geography of global inequality 1880-1960. In addition, we would use these data to estimate other indicators of living conditions, such as nutritional attainment, which may provide further insights into the impact of industrialisation on inequality. This project utilised the published reports of household expenditure surveys. These published reports are held at copyright libraries or national statistical offices and were typically part of the output of government departments (for example, the UK Board of Trade). We compiled our bibliographies through library searches and requests to various national statistical offices. Many of these reports are published in English, but a substantial number are only published in the language of the relevant nation state. The published household expenditure survey reports typically include summary tables of grouped data of income, expenditures, and household structure. All of these reports, and the data therein, are already in the public domain, and our bibliography provides details of when and where they were published. From these data we estimated a suite of inequality measures, using three different techniques. The inequality measures are: Gini coefficient, 90/10 percentile ratio, 90/50 percentile ratio, and the 50/10 percentile ratio. These inequality measures were estimated three ways: linear interpolation, the Beta-Lorenz method and a log normal density estimation. Not all published household expenditure survey reports contain sufficient data to estimate inequality measures. Our selection was based simply on whether the reports published the appropriate data. All that we required to estimate inequality were total household income or expenditure grouped by class (and the group average incomes/expenditures) and the total number of households and average household size.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Florence: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florence median household income by age. You can refer the same here
The typical American picture of a family with 2.5 kids might not be as relevant as it once was: In 2023, there was an average of 1.94 children under 18 per family in the United States. This is a decrease from 2.33 children under 18 per family in 1960.
Familial structure in the United States
If there’s one thing the United States is known for, it’s diversity. Whether this is diversity in ethnicity, culture, or family structure, there is something for everyone in the U.S. Two-parent households in the U.S. are declining, and the number of families with no children are increasing. The number of families with children has stayed more or less constant since 2000.
Adoptions in the U.S.
Families in the U.S. don’t necessarily consist of parents and their own biological children. In 2021, around 35,940 children were adopted by married couples, and 13,307 children were adopted by single women.
In 2023, the usual median hourly rate of a worker's wage in the United States was 19.24 U.S. dollars, a decrease from the previous year. Dollar value is based on 2023 U.S. dollars. In 1979, the median hourly earnings in the U.S. was 17.48 dollars.
This table contains 22 series, with data for years 1926 - 1960 (not all combinations necessarily have data for all years), and was last released on 2000-02-18. This table contains data described by the following dimensions (Not all combinations are available): Geography (11 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...), Wages and salaries (2 items: Based on Standard Industrial Classification; 1948 (SIC); Based on Standard Industrial Classification; 1980 (SIC) ...).
This study re-analyzes Isaac Ehrlich's 1960 cross-section data on the relationship between aggregate levels of punishment and crime rates. It provides alternative model specifications and estimations. The study examined the deterrent effects of punishment on seven FBI index crimes: murder, rape, assault, larceny, robbery, burglary, and auto theft. Socio-economic variables include family income, percentage of families earning below half of the median income, unemployment rate for urban males in the age groups 14-24 and 35-39, labor force participation rate, educational level, percentage of young males and non-whites in the population, percentage of population in the SMSA, sex ratio, and place of occurrence. Two sanction variables are also included: 1) the probability of imprisonment, and 2) the average time served in prison when sentenced (severity of punishment). Also included are: per capita police expenditure for 1959 and 1960, and the crime rates for murder, rape, assault, larceny, robbery, burglary, and auto theft.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan JP: Household and NPISH: Disposable Income: Net data was reported at 365,218.479 JPY bn in Dec 2026. This records an increase from the previous number of 363,517.238 JPY bn for Sep 2026. Japan JP: Household and NPISH: Disposable Income: Net data is updated quarterly, averaging 294,978.969 JPY bn from Mar 1960 (Median) to Dec 2026, with 268 observations. The data reached an all-time high of 365,218.479 JPY bn in Dec 2026 and a record low of 9,822.337 JPY bn in Mar 1960. Japan JP: Household and NPISH: Disposable Income: Net data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Japan – Table JP.OECD.EO: Household Sector Account: Forecast: OECD Member: Quarterly. YDH - Net household and non-profit institutions serving households disposable incomeHousehold disposable income consists essentially of income from employment and from the operation of unincorporated enterprises, plus receipts of interest, dividends and social benefits minus payments of interest, current taxes and social contributions. It also includes income from imputed rents received by owner-occupiers of dwellings. It can be measured on a gross basis, i.e. before deduction of consumption of fixed capital (CFC) or on a net basis, i.e., after the deduction of CFC.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Renton: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Renton median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Falls County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Falls County median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Lebanon: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lebanon median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Otoe County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Otoe County median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Household Income: Trend: Use of Income: Primary Income Payable: Property: Unincorporated Enterprises Interest data was reported at 2,292.000 AUD mn in Mar 2019. This records a decrease from the previous number of 2,294.000 AUD mn for Dec 2018. Australia Household Income: Trend: Use of Income: Primary Income Payable: Property: Unincorporated Enterprises Interest data is updated quarterly, averaging 663.000 AUD mn from Sep 1959 (Median) to Mar 2019, with 239 observations. The data reached an all-time high of 2,575.000 AUD mn in Dec 2011 and a record low of 11.000 AUD mn in Dec 1960. Australia Household Income: Trend: Use of Income: Primary Income Payable: Property: Unincorporated Enterprises Interest data remains active status in CEIC and is reported by Australian Bureau of Statistics. The data is categorized under Global Database’s Australia – Table AU.A288: SNA08: Household Saving Ratio and Household Income: Trend.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Family Income in the United States (MEFAINUSA672N) from 1953 to 2024 about family, median, income, real, and USA.