18 datasets found
  1. T

    Vital Signs: Income (Median by Workplace) – Bay Area (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jun 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Income (Median by Workplace) – Bay Area (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Workplace-Bay-Area-20/ng4g-jpsd
    Explore at:
    xml, json, csv, tsv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jun 7, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Income (EC4)

    FULL MEASURE NAME
    Household income by place of residence

    LAST UPDATED
    January 2023

    DESCRIPTION
    Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 4Pb (1970)
    Form STF3 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B19001 (2005-2021; household income by place of residence)
    Form B19013 (2005-2021; median household income by place of residence)
    Form B08521 (2005-2021; median worker earnings by place of employment)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Income derived from the decennial Census data reflects the income earned in the prior calendar year, whereas income derived from the American Community Survey (ACS) data reflects the prior 12 month period; note that this inconsistency has a minor effect on historical comparisons (see Income and Earnings Data section of the ACS General Handbook - https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general_handbook_2020_ch09.pdf). ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    Quintile income for 1970-2000 is imputed from decennial Census data using methodology from the California Department of Finance. Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index (CPI) for 2021 specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data uses national CPI for 1970. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  2. T

    Vital Signs: Income (Median by Workplace) – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated May 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau: American Community Survey (2019). Vital Signs: Income (Median by Workplace) – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Workplace-Bay-Area/kjfs-sujy
    Explore at:
    json, csv, tsv, application/rdfxml, xml, application/rssxmlAvailable download formats
    Dataset updated
    May 2, 2019
    Dataset authored and provided by
    U.S. Census Bureau: American Community Survey
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Income (EC5)

    FULL MEASURE NAME Worker income by workplace (earnings)

    LAST UPDATED October 2016

    DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org

    U.S. Census Bureau: American Community Survey Form B08521 (2006-2015; place of employment) http://api.census.gov

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2015; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  3. N

    Age-wise distribution of San Francisco County, CA household incomes:...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of San Francisco County, CA household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/864e119d-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Francisco, California
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in San Francisco County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 11,467(3.17%) households where the householder is under 25 years old, 149,304(41.25%) households with a householder aged between 25 and 44 years, 114,032(31.51%) households with a householder aged between 45 and 64 years, and 87,109(24.07%) households where the householder is over 65 years old.
    • In San Francisco County, the age group of 25 to 44 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for San Francisco County median household income by age. You can refer the same here

  4. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  5. T

    Vital Signs: Income (Median by Place of Residence) – by tract

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Jul 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Income (Median by Place of Residence) – by tract [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Place-of-Residence-by/8bur-3axz
    Explore at:
    csv, application/rssxml, tsv, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 10, 2019
    Description

    VITAL SIGNS INDICATOR Income (EC4)

    FULL MEASURE NAME Household income by place of residence

    LAST UPDATED May 2019

    DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org

    U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  6. a

    Data from: Median Household Income

    • resilient-bay-area-stanford.hub.arcgis.com
    Updated Oct 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University (2018). Median Household Income [Dataset]. https://resilient-bay-area-stanford.hub.arcgis.com/items/6be999fdfceb47bab6cab340e8f0160d
    Explore at:
    Dataset updated
    Oct 11, 2018
    Dataset authored and provided by
    Stanford University
    Area covered
    Earth
    Description

    Feature layer generated from running the Join Features solution

  7. F

    Estimate of Median Household Income for Alameda County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimate of Median Household Income for Alameda County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICA06001A052NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Alameda County, California
    Description

    Graph and download economic data for Estimate of Median Household Income for Alameda County, CA (MHICA06001A052NCEN) from 1989 to 2023 about Alameda County, CA; San Francisco; CA; households; median; income; and USA.

  8. U.S. California median household income 1990-2023

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. California median household income 1990-2023 [Dataset]. https://www.statista.com/statistics/205778/median-household-income-in-california/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the median household income in California amounted to 89,870 U.S. dollars. This is an increase from the previous year, when the median household income in the state was 85,300 U.S. dollars. Median household income for the United States can be accessed here.

  9. 2018 03: Bay Area Opportunity Zones

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Mar 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2018). 2018 03: Bay Area Opportunity Zones [Dataset]. https://opendata.mtc.ca.gov/documents/2018-03-bay-area-opportunity-zones/about
    Explore at:
    Dataset updated
    Mar 19, 2018
    Dataset provided by
    Metropolitan Transportation Commission
    Association of Bay Area Governmentshttps://abag.ca.gov/
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    San Francisco Bay Area
    Description

    The federal tax bill, passed in December 2017, allows investors to defer or eliminate capital gains on investments made in “Opportunity Zones”. These zones must be designated by the governor in each state from a set of eligible Census tracts. Governors must select no more than 25 percent of eligible tracts statewide.Federal criteria for determining eligible areas states that tracts must either have poverty rates above 20 percent or median family income below 80 percent of either the statewide or metropolitan area income. 3,516 Census tracts in California qualify under this criteria, spread across 54 counties. Of these, the governor must select tracts as Opportunity Zones in California.The state’s final recommendation is provided on the map. Within the San Francisco Bay Region, 530 tracts were eligible under the federal criteria, of which 107 were designated by the governor. Of the 107 designated tracts, 94 tracts were Metropolitan Transportation Commission Communities of Concern (now Equity Priority Communities).

  10. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/school/Bay%20Area%20Medical%20Academy
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    FrogHire.ai
    Description

    The Average Salary chart presents a clear visualization of the salary progression for graduates from Bay Area Medical Academy from 2020 to 2023, illustrating the yearly average salary trends. Additionally, the chart compares these figures with the overall average salary trends of graduates from all schools, providing a comprehensive view of how Bay Area Medical Academy’s graduates stand in terms of earning potential relative to their peers nationwide. This data is crucial for prospective students assessing the ROI of their education at Bay Area Medical Academy.

  11. T

    Vital Signs: Jobs by Wage Level - Metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Metro/bt32-8udw
    Explore at:
    csv, tsv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  12. Social Indicators: Bay Area Survey II, [1972]

    • icpsr.umich.edu
    ascii
    Updated Feb 16, 1992
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanks, J. Merrill (1992). Social Indicators: Bay Area Survey II, [1972] [Dataset]. http://doi.org/10.3886/ICPSR08540.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Feb 16, 1992
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Shanks, J. Merrill
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8540/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8540/terms

    Time period covered
    Jun 19, 1972 - Sep 30, 1972
    Area covered
    United States, California, San Francisco Bay Area
    Description

    For this survey respondents were questioned concerning household composition, national affairs and national leaders, men's and women's roles, the Women's Liberation movement, political interest and trust, crime control, moral standards, and other current issues, as well as political participation, explanations for "different life chances" and differing longevity, poverty, and racial differences. Personal information about the respondent includes occupation, industry, education, religion, marital status, union and club membership, political and party identification, and income. An adjective checklist about national government was administered. In addition, all respondents were asked to complete questionnaires dealing with sexual behavior. The dataset also contains census tract information from the 1970 Census such as median family income, years of education, persons per household, percent black and Spanish, percent below poverty level, percent other races, and housing information.

  13. Vital Signs: Housing Affordability - Bay Area Overall

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2019). Vital Signs: Housing Affordability - Bay Area Overall [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Housing-Affordability-Bay-Area-Overall/xch7-3urm
    Explore at:
    application/rssxml, tsv, json, csv, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Feb 18, 2019
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    Housing Affordability (EQ2)

    FULL MEASURE NAME Housing Affordability

    LAST UPDATED October 2018

    DATA SOURCE U.S Census Bureau: Decennial Census Form STF3 – https://nhgis.org (1980-1990) Form SF3a – https://nhgis.org (2000)

    U.S. Census Bureau: American Community Survey Form B25074 (2009-2017) Form B25095 (2009-2017) http://api.census.gov

    Image: Flickr (Creative Commons license), Photographer: Frank Kehren, https://www.flickr.com/photos/fkehren/8481894011

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The share of income brackets used for different Census and ACS forms varied over time. To allow for historical comparisons, the Census Bureau merges housing expenditure brackets into three consistent bins (less than 20 percent, 20 percent to 34 percent, and more than 35 percent) that work for all years. The highest income bracket for renters in the ACS data was $100,000 or more, while the homeowner dataset included brackets for $100,000 to $149,999 and $150,000 and above. These brackets were merged together to allow for uniform comparison across tenure. While some studies use 30 percent as the affordability threshold, Vital Signs uses 35 percent as this is the closest break point using the standardized affordability brackets above. Historical data for Napa County is unavailable due to an insufficient sample size for renters in a number of years, making it impossible to calculate affordability for all households. All ACS data is for a single year, rather than a rolling average. Income breakdown data is only provided for one year as it is not possible to compare consistent inflation-adjusted income brackets over time given Census data limitations.

  14. Average salaries in leading U.S. life science regions 2023

    • statista.com
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average salaries in leading U.S. life science regions 2023 [Dataset]. https://www.statista.com/statistics/1465276/salaries-in-top-us-life-science-regions/
    Explore at:
    Dataset updated
    May 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Northern California's life science industry, also called Biotech Bay because of its concentration around San Francisco's bay area, had the highest average salary among U.S. life science hubs as of 2023. The average salary in this region stood at some 212,000 U.S. dollars. The cost of living and the concentration of life science establishments in certain areas are the major reasons for large salary differences among U.S. regions.

  15. T

    Vital Signs: Displacement Risk - by tract (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Displacement Risk - by tract (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Displacement-Risk-by-tract-2022-/r6hf-y7m3
    Explore at:
    application/rdfxml, csv, tsv, xml, json, application/rssxmlAvailable download formats
    Dataset updated
    Aug 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Displacement Risk (EQ3)

    FULL MEASURE NAME
    Share of lower-income households living in tracts at risk of displacement

    LAST UPDATED
    January 2023

    DESCRIPTION
    Displacement risk refers to the share of lower-income households living in neighborhoods that have been losing lower-income residents over time, thus earning the designation "at risk". While "at risk" households may not necessarily be displaced in the short-term or long-term, neighborhoods identified as being "at risk" signify pressure as reflected by the decline in lower-income households (who are presumed to relocate to other more affordable communities). The dataset includes metropolitan area, regional, county and census tract tables.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Form STF3 (1990-2000)

    U.S. Census Bureau: American Community Survey (5-year rolling average) - https://data.census.gov/
    2009-2021
    Form B19001, B19013

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Aligning with the approach used for Plan Bay Area 2040, displacement risk is calculated by comparing the analysis year with the most recent year prior to identify census tracts that are losing lower-income households. Tract data, as well as regional income data, are calculated using 5-year rolling averages for consistency – given that tract data is only available on a 5-year basis. Using household tables by income level, the number of households in each tract falling below the median are summed, which involves summing all brackets below the regional median and then summing a fractional share of the bracket that includes the regional median (assuming a uniform distribution within that bracket).

    Once all tracts in a given county or metro area are synced to today’s boundaries, the analysis identifies census tracts of greater than 500 lower-income people (in the prior year) to filter out low-population areas. For those tracts, any net loss between the prior year and the analysis year results in that tract being flagged as being at risk of displacement, and all lower-income households in that tract are flagged. To calculate the share of households at risk, the number of lower-income households living in flagged tracts are summed and divided by the total number of lower-income households living in the larger geography (county or metro). Minor deviations on a year-to-year basis should be taken in context, given that data on the tract level often fluctuates and has a significant margin of error; changes on the county and regional level are more appropriate to consider on an annual basis instead.

  16. T

    Vital Signs: Income (Median by Place of Residence) – by metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Income (Median by Place of Residence) – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Place-of-Residence-by/5ubk-6knb
    Explore at:
    application/rdfxml, csv, tsv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Aug 10, 2019
    Description

    VITAL SIGNS INDICATOR Income (EC4)

    FULL MEASURE NAME Household income by place of residence

    LAST UPDATED May 2019

    DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org

    U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  17. T

    Vital Signs: Housing Permits - Bay Area (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Housing Permits - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Housing-Permits-Bay-Area-2022-/wmxm-3pzn
    Explore at:
    json, csv, xml, application/rdfxml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Feb 23, 2023
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Housing Permits (LU3)

    FULL MEASURE NAME
    Permitted housing units

    LAST UPDATED
    February 2023

    DESCRIPTION
    Housing growth is measured in terms of the number of units that local jurisdictions permit throughout a given year. A permitted unit is a unit that a city or county has authorized for construction.

    DATA SOURCE
    California Housing Foundation/Construction Industry Research Board (CIRB) - https://www.cirbreport.org/
    Construction Review report (1967-2022)

    Association of Bay Area Governments (ABAG) – Metropolitan Transportation Commission (MTC) - https://data.bayareametro.gov/Development/HCD-Annual-Progress-Report-Jurisdiction-Summary/nxbj-gfv7
    Housing Permits Database (2014-2021)

    Census Bureau Building Permit Survey - https://www2.census.gov/econ/bps/County/
    Building permits by county (annual, monthly)

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Bay Area housing permits data by single/multi family come from the California Housing Foundation/Construction Industry Research Board (CIRB). Affordability breakdowns from 2014 to 2021 come from the Association of Bay Area Governments (ABAG) – Metropolitan Transportation Commission (MTC) Housing Permits Database.

    Single-family housing units include detached, semi-detached, row house and town house units. Row houses and town houses are included as single-family units when each unit is separated from the adjacent unit by an unbroken ground-to-roof party or fire wall. Condominiums are included as single-family units when they are of zero-lot-line or zero-property-line construction; when units are separated by an air space; or, when units are separated by an unbroken ground-to-roof party or fire wall. Multi-family housing includes duplexes, three-to-four-unit structures and apartment-type structures with five units or more. Multi-family also includes condominium units in structures of more than one living unit that do not meet the single-family housing definition.

    Each multi-family unit is counted separately even though they may be in the same building. Total units is the sum of single-family and multi-family units. County data is available from 1967 whereas city data is available from 1990. City data is only available for incorporated cities and towns. All permits in unincorporated cities and towns are included under their respective county’s unincorporated total. Permit data is not available for years when the city or town was not incorporated.

    Affordable housing is the total number of permitted units affordable to low and very low income households. Housing affordable to very low income households are households making below 50% of the area median income. Housing affordable to low income households are households making between 50% and 80% of the area median income. Housing affordable to moderate income households are households making below 80% and 120% of the area median income. Housing affordable to above moderate income households are households making above 120% of the area median income.

    Permit data is missing for the following cities and years:
    Clayton, 1990-2007
    Lafayette, 1990-2007
    Moraga, 1990-2007
    Orinda, 1990-2007
    San Ramon, 1990

    Building permit data for metropolitan areas for each year is the sum of non-seasonally adjusted monthly estimates from the Census Building Permit Survey. The Bay Area values are the sum of the San Francisco-Oakland-Hayward MSA and the San Jose-Sunnyvale-Santa Clara MSA. The counties included in these areas are: San Francisco, Marin, Contra Costa, Alameda, San Mateo, Santa Clara, and San Benito.

    Permit values reflect the number of units permitted in each respective year. Note that the data columns come from difference sources. The columns (SFunits, MFunits, TOTALunits, SF_Share and MF_Share) are sourced from CIRB. The columns (VeryLowunits, Lowunits, Moderateunits, AboveModerateunits, VeryLow_Share, Low_Share, Moderate_Share, AboveModerate_Share, Affordableunits and Affordableunits_Share) are sourced from the ABAG Housing Permits Database. Due to the slightly different methodologies that exist within each of those datasets, the total units from each of the two sources might not be consistent with each other.

    As shown, three different data sources are used for this analysis of housing permits issued in the Bay Area. Data from the Construction Industry Research Board (CIRB) represents the best available data source for examining housing permits issued over time in cities and counties across the Bay Area, dating back to 1967. In recent years, Annual Progress Report (APR) data collected by the California Department of Housing and Community Development has been available for analyzing housing permits issued by affordability levels. Since CIRB data is only available for California jurisdictions, the U.S. Census Bureau provides the best data source for comparing housing permits issued across different metropolitan areas. Notably, annual permit totals for the Bay Area differ across these three data sources, reflecting the limitations of needing to use different data sources for different purposes.

  18. T

    Vital Signs: Displacement Risk - by metro (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Displacement Risk - by metro (2022) [Dataset]. https://data.bayareametro.gov/widgets/83yy-yijh?mobile_redirect=true
    Explore at:
    application/rdfxml, xml, tsv, csv, json, application/rssxmlAvailable download formats
    Dataset updated
    Aug 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Displacement Risk (EQ3)

    FULL MEASURE NAME
    Share of lower-income households living in tracts at risk of displacement

    LAST UPDATED
    January 2023

    DESCRIPTION
    Displacement risk refers to the share of lower-income households living in neighborhoods that have been losing lower-income residents over time, thus earning the designation "at risk". While "at risk" households may not necessarily be displaced in the short-term or long-term, neighborhoods identified as being "at risk" signify pressure as reflected by the decline in lower-income households (who are presumed to relocate to other more affordable communities). The dataset includes metropolitan area, regional, county and census tract tables.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Form STF3 (1990-2000)

    U.S. Census Bureau: American Community Survey (5-year rolling average) - https://data.census.gov/
    2009-2021
    Form B19001, B19013

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Aligning with the approach used for Plan Bay Area 2040, displacement risk is calculated by comparing the analysis year with the most recent year prior to identify census tracts that are losing lower-income households. Tract data, as well as regional income data, are calculated using 5-year rolling averages for consistency – given that tract data is only available on a 5-year basis. Using household tables by income level, the number of households in each tract falling below the median are summed, which involves summing all brackets below the regional median and then summing a fractional share of the bracket that includes the regional median (assuming a uniform distribution within that bracket).

    Once all tracts in a given county or metro area are synced to today’s boundaries, the analysis identifies census tracts of greater than 500 lower-income people (in the prior year) to filter out low-population areas. For those tracts, any net loss between the prior year and the analysis year results in that tract being flagged as being at risk of displacement, and all lower-income households in that tract are flagged. To calculate the share of households at risk, the number of lower-income households living in flagged tracts are summed and divided by the total number of lower-income households living in the larger geography (county or metro). Minor deviations on a year-to-year basis should be taken in context, given that data on the tract level often fluctuates and has a significant margin of error; changes on the county and regional level are more appropriate to consider on an annual basis instead.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). Vital Signs: Income (Median by Workplace) – Bay Area (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Workplace-Bay-Area-20/ng4g-jpsd

Vital Signs: Income (Median by Workplace) – Bay Area (2022)

Explore at:
xml, json, csv, tsv, application/rdfxml, application/rssxmlAvailable download formats
Dataset updated
Jun 7, 2022
Area covered
San Francisco Bay Area
Description

VITAL SIGNS INDICATOR
Income (EC4)

FULL MEASURE NAME
Household income by place of residence

LAST UPDATED
January 2023

DESCRIPTION
Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Count 4Pb (1970)
Form STF3 (1980-1990)
Form SF3a (2000)

U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B19001 (2005-2021; household income by place of residence)
Form B19013 (2005-2021; median household income by place of residence)
Form B08521 (2005-2021; median worker earnings by place of employment)

Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
1970-2021

CONTACT INFORMATION
vitalsigns.info@bayareametro.gov

METHODOLOGY NOTES (across all datasets for this indicator)
Income derived from the decennial Census data reflects the income earned in the prior calendar year, whereas income derived from the American Community Survey (ACS) data reflects the prior 12 month period; note that this inconsistency has a minor effect on historical comparisons (see Income and Earnings Data section of the ACS General Handbook - https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general_handbook_2020_ch09.pdf). ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

Quintile income for 1970-2000 is imputed from decennial Census data using methodology from the California Department of Finance. Bay Area income is the population weighted average of county-level income.

Income has been inflated using the Consumer Price Index (CPI) for 2021 specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data uses national CPI for 1970. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

Search
Clear search
Close search
Google apps
Main menu