This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Overview This dataset provides insights into salary distributions across various job classifications, enabling a deeper understanding of compensation trends across industries, experience levels, and geographical locations. It serves as a valuable resource for HR professionals, job seekers, researchers, and policymakers aiming to analyze pay scales, wage gaps, and salary progression trends.
Data Sources The data is aggregated from multiple employment and compensation reports, salary surveys, and publicly available job postings. It has been cleaned, standardized, and structured to ensure consistency and usability for analytical purposes.
Features Job Title: Specific title of the job (e.g., Data Analyst, Software Engineer, Marketing Manager).
Job Classification: Broad category of jobs (e.g., IT, Finance, Healthcare, Education).
Industry: The sector in which the job belongs (e.g., Technology, Banking, Retail).
Experience Level: Categorized as Entry-level, Mid-level, or Senior-level.
Education Requirement: Minimum qualification required for the job role.
Average Salary (INR/USD/Other Currency): The median or mean salary for a particular job classification.
Salary Range: The minimum and maximum salary offered for a role.
Location: Country or region where the job is based.
Employment Type: Full-time, Part-time, Contract, or Remote.
Company Size: Small, Medium, or Large enterprises.
Potential Use Cases Salary Benchmarking: Compare salary expectations across industries and job roles.
Career Planning: Identify lucrative career paths based on salary trends.
Wage Gap Analysis: Examine salary disparities by gender, location, or experience level.
Cost of Living Adjustments: Assess salaries relative to regional economic conditions.
HR and Recruitment Strategies: Optimize compensation packages to attract top talent.
Acknowledgments The dataset is compiled from various salary reports and job market research sources. Special thanks to contributors and organizations providing employment data for analysis.
License This dataset is shared for educational, research, and analytical purposes. Please ensure compliance with relevant data usage policies before any commercial applications.
Get Started The dataset can be explored using Python (Pandas), R, SQL, or visualization tools like Tableau and Power BI. Sample notebooks and analyses are available in the Kaggle notebook section.
This statistic shows the median hourly wages earned by employees working in software publishing in the United States from 2008 to 2021. In 2021, the median hourly wage of computer and information system managers in the United States was 83.06 U.S. dollars.
In 2018, the average annual gross salary of plant managers in Italy amounted to 91.8 thousand euros. The graph, based on data provided by JobPricing, offers a general overview of the annual gross salaries in the manufacturing sector. It includes the salary figures for selected job titles across different grading levels.
A marketing director's average salary was expected to be over ************ Indian rupees per annum in 2024. A pilot and software architect's average salary was estimated to be over ************* rupees. High-paying jobs usually stem from demand for niche skills, technological advancements, and revenue generation for a company, among other factors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Average Salary by Job Classification’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c279deaa-d913-48fe-8693-5899e9291025 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually
--- Original source retains full ownership of the source dataset ---
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The wages on the Job Bank website are specific to an occupation and provide information on the earnings of workers at the regional level. Wages for most occupations are also provided at the national and provincial level. In Canada, all jobs are associated with one specific occupational grouping which is determined by the National Occupational Classification. For most occupations, a minimum, median and maximum wage estimates are displayed. They are update annually. If you have comments or questions regarding the wage information, please contact the Labour Market Information Division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca
The statistic gives the results of the annual salary survey among logistics and supply chain professionals, asking respondents about their annual salaries including bonuses and other compensations in 2016 and 2017, and broken down by job function. In that period, the average salary for a supply chain management employee amounted to about 120,175 U.S. dollars, down from 141,540 U.S. dollars in the previous year.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset explores how remote work opportunities intersect with salaries, experience, and employment types across industries. It contains clean, structured records of 500 hypothetical employees in remote or hybrid job roles, suitable for salary modeling, HR analytics, or industry-based salary insights.
Column | Description |
---|---|
Company | Name of the organization where the individual is employed |
Job Title | Designation of the employee (e.g., Software Engineer, Product Manager) |
Industry | Sector of employment (e.g., Technology, Finance, Healthcare) |
Location | City and/or country of the job or the headquarters |
Employment Type | Full-time, Part-time, Contract, or Internship |
Experience Level | Job seniority: Entry, Mid, Senior, or Lead |
Remote Flexibility | Indicates whether the job is Remote, Hybrid, or Onsite |
Salary (Annual) | Annual gross salary before tax |
Currency | Currency in which the salary is paid (e.g., USD, EUR, INR) |
Years of Experience | Total years of professional experience the employee has |
Average hourly and weekly wage rate, and median hourly and weekly wage rate by National Occupational Classification (NOC), type of work, gender, and age group.
Explore the progression of average salaries for graduates in Educational Human Re*** (See Job 1 For Full Title) from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Educational Human Re*** (See Job 1 For Full Title) relative to other fields. This data is essential for students assessing the return on investment of their education in Educational Human Re*** (See Job 1 For Full Title), providing a clear picture of financial prospects post-graduation.
This dataset is a listing of all active City of Chicago employees, complete with full names, departments, positions, employment status (part-time or full-time), frequency of hourly employee –where applicable—and annual salaries or hourly rate. Please note that "active" has a specific meaning for Human Resources purposes and will sometimes exclude employees on certain types of temporary leave. For hourly employees, the City is providing the hourly rate and frequency of hourly employees (40, 35, 20 and 10) to allow dataset users to estimate annual wages for hourly employees. Please note that annual wages will vary by employee, depending on number of hours worked and seasonal status. For information on the positions and related salaries detailed in the annual budgets, see https://www.cityofchicago.org/city/en/depts/obm.html
Data Disclosure Exemptions: Information disclosed in this dataset is subject to FOIA Exemption Act, 5 ILCS 140/7 (Link:https://www.ilga.gov/legislation/ilcs/documents/000501400K7.htm)
Popular US workplace blog AskAManager (askamanager.org) sponsors an annual salary survey of blog readers. The 2023 survey collected data about industry, job function, title, annual salary, additional compensation, race, gender, remote/on-site requirements, education, location, and years' experience.
The dataset here features responses collected between April 11 and 28, 2023, and has some 16,000 responses. This version of the data set has employed several feature engineering techniques to group and cleanse data, convert the currency to USD values as of April 1, 2023, and add clarity to location data. In particular, US respondents were paired when possible with a metropolitan area.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Gross weekly and hourly earnings by level of occupation, UK, quarterly, not seasonally adjusted. Labour Force Survey. These are official statistics in development.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🚀 Data Science Careers in 2025: Jobs and Salary Trends in Pakistan 🚀 Data Science is one of the fastest-growing fields, and by 2025, the demand for skilled professionals in Pakistan will only increase. If you’re considering a career in Data Science, here’s what you need to know about the top jobs and salary trends.
🔍 Top Data Science Jobs in 2025 1) Data Scientist Avg Salary: PKR 1.2M - 2.5M/year (Entry-Level), PKR 3M - 6M/year (Experienced) Skills: Python, R, Machine Learning, Data Visualization
2) Data Analyst Avg Salary: PKR 800K - 1.5M/year (Entry-Level), PKR 2M - 3.5M/year (Experienced) Skills: SQL, Excel, Tableau, Power BI
3) Machine Learning Engineer Avg Salary: PKR 1.5M - 3M/year (Entry-Level), PKR 4M - 7M/year (Experienced) Skills: TensorFlow, PyTorch, Deep Learning, NLP
4)Business Intelligence Analyst Avg Salary: PKR 1M - 2M/year (Entry-Level), PKR 2.5M - 4M/year (Experienced) Skills: Data Warehousing, ETL, Dashboarding
5) AI Research Scientist Avg Salary: PKR 2M - 4M/year (Entry-Level), PKR 5M - 10M/year (Experienced) Skills: AI Algorithms, Research, Advanced Mathematic
💡 Why Choose Data Science? High Demand: Every industry in Pakistan needs data professionals. Attractive Salaries: Competitive pay based on technical expertise. Growth Opportunities: Unlimited career growth in this field.
📈 Salary Trends Entry-Level: PKR 800K - 1.5M/year Mid-Level: PKR 2M - 4M/year Senior-Level: PKR 5M+ (depending on expertise and industry)
🛠️ How to Get Started? Learn Skills: Focus on Python, SQL, Machine Learning, and Data Visualization. Build Projects: Work on real-world datasets to create a strong portfolio. Network: Connect with industry professionals and join Data Science communities.
work_year: The year in which the data was recorded. This field indicates the temporal context of the data, important for understanding salary trends over time.
job_title: The specific title of the job role, like 'Data Scientist', 'Data Engineer', or 'Data Analyst'. This column is crucial for understanding the salary distribution across various specialized roles within the data field.
job_category: A classification of the job role into broader categories for easier analysis. This might include areas like 'Data Analysis', 'Machine Learning', 'Data Engineering', etc.
salary_currency: The currency in which the salary is paid, such as USD, EUR, etc. This is important for currency conversion and understanding the actual value of the salary in a global context.
salary: The annual gross salary of the role in the local currency. This raw salary figure is key for direct regional salary comparisons.
salary_in_usd: The annual gross salary converted to United States Dollars (USD). This uniform currency conversion aids in global salary comparisons and analyses.
employee_residence: The country of residence of the employee. This data point can be used to explore geographical salary differences and cost-of-living variations.
experience_level: Classifies the professional experience level of the employee. Common categories might include 'Entry-level', 'Mid-level', 'Senior', and 'Executive', providing insight into how experience influences salary in data-related roles.
employment_type: Specifies the type of employment, such as 'Full-time', 'Part-time', 'Contract', etc. This helps in analyzing how different employment arrangements affect salary structures.
work_setting: The work setting or environment, like 'Remote', 'In-person', or 'Hybrid'. This column reflects the impact of work settings on salary levels in the data industry.
company_location: The country where the company is located. It helps in analyzing how the location of the company affects salary structures.
company_size: The size of the employer company, often categorized into small (S), medium (M), and large (L) sizes. This allows for analysis of how company size influences salary.
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Economically Active Population Survey: Average wages of the main job by period, type of working day, type of job post and decile. Annual. National.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The year during which the salary was paid. There are two types of work year values: 2020 Year with a definitive amount from the past 2021e Year with an estimated amount (e.g. current year)
The experience level in the job during the year with the following possible values: EN Entry-level / Junior MI Mid-level / Intermediate SE Senior-level / Expert EX Executive-level / Director
The type of employement for the role: PT Part-time FT Full-time CT Contract FL Freelance
The role worked in during the year. salary The total gross salary amount paid.
The currency of the salary paid as an ISO 4217 currency code.
The salary in USD (FX rate divided by avg. USD rate for the respective year via fxdata.foorilla.com).
Employee's primary country of residence in during the work year as an ISO 3166 country code.
The overall amount of work done remotely, possible values are as follows: 0 No remote work (less than 20%) 50 Partially remote 100 Fully remote (more than 80%)
The country of the employer's main office or contracting branch as an ISO 3166 country code.
The average number of people that worked for the company during the year: S less than 50 employees (small) M 50 to 250 employees (medium) L more than 250 employees (large)
Average hourly wages for women and men in all represented and non-represented step-progression job classes
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
City-Parish employees' annual salaries and other payroll related information. Information is calculated after the last payroll is run for the year specified. Some fields, such as job title and department, are accurate as of the time the data was captured for Open Data BR. For example, if an employee worked for three departments throughout the year, only the department they worked for at the time we collected the data will be shown.
***In November of 2018, the City-Parish switched to a new payroll system. This data contains employee information from 2018 onward. For prior year data, please see the Legacy City-Parish Employee Annual Salaries https://data.brla.gov/Government/Legacy-City-Parish-Employee-Annual-Salaries/g5c2-myyj
This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually