Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset presents information on the mean age of fertility of births for women between ages 15 to 49. The indicator is defined as the average age at which women give birth.
Facebook
TwitterThis is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
Facebook
TwitterBy Humanitarian Data Exchange [source]
This Kaggle dataset contains a wide array of health and socioeconomic indicators relating to Mexico. It covers topics ranging from mortality and global health estimates, to Sustainable Development Goals, Millennium Development Goals (MDGs), Health Systems, Malaria and Tuberculosis, Child Health, Infectious Diseases, World Health Statistics, Health Financing and Public Heath & Environment. Furthermore, it includes indicators for Substance Use & Mental Health; Tobacco use; Injuries & Violence; HIV/AIDS & Other STIs; Nutrition; Urban Health; Noncommunicable Diseases (NCDs); Neglected Tropical Diseases (NTDs); Infrastructure; Essential Technologies in healthcare systems; Demographic & Socioeconomic Statistics. Finally it features indicators surrounding International Regulations Monitoring Frameworks as well as Insecticides Resistance amongst other topics.
This dataset is bursting with information on how Mexico stands in a variety of different aspects across its development spectrum- enabling researchers to gain deeper insight into the country's ecosystem as well as providing them with the data required to pinpoint potential ‘hotspots’- Areas which may require heightened attention either from policy makers or individuals looking for smarter ways through which their efforts might benefit their target population most efficiently. Don’t miss your chance at unlocking the power of this comprehensive dataset so you can make sure that no stone is left unturned when it comes to realising tangible outcomes from your research!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
The dataset is organized into several key categories and each category contains a number of different indicators related to that particular area of healthcare. In order to better understand any given indicator in more detail, each one also has an associated metadata page with additional information about its definition and calculation method.
In order to make use of the data in this dataset there are several steps you will need to take: - Decide what aspect or area of healthcare you would like to explore further in more detail; - Review/understand any associated metadata provided regarding its definition or calculation method;
- Download any necessary files containing relevant numbers or figures;
- Analyze or explore this data further;
6 Use your findings to inform decisions about policy interventions for improving general public health outcomes in Mexico!
- Analyzing Mexico's progress towards achieving the desired health indicators for the Sustainable Development Goals (SDGs).
- Examining how access to healthcare and mental health services vary by region, as well as disparities in treatment within regions.
- Developing machine learning models to predict outcome based on different factors such as environment and socioeconomic status
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: infrastructure-indicators-for-mexico-11.csv | Column name | Description | |:---------------------------|:---------------------------------------------------------------| | GHO (CODE) | The Global Health Observatory code for the indicator. (String) | | GHO (DISPLAY) | The name of the indicator. (String) | | GHO (URL) | The URL for the indicator. (URL) | | PUBLISHSTATE (CODE) | The code for the publication state of the indicator. (String) | | PUBLISHSTATE (DISPLAY) | The name of the publication state of the indicator. (String) | | PUBLISHSTATE (URL) | The URL for the publication state of the indicator. (URL) | | YEAR (CODE) | The code for the year of the indicator. (String) | | YEAR (DISPLAY) | The name of the year of the indicator. (String) | | YEAR (URL) | The URL for the year of the indicator. (URL) | | REGION (CODE) | The code for the region of the indicator. (String) | | REGION (DISPLAY) | The name of the region of the indicator. (String) | | REGION (URL) |...
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
As of July 2nd, 2024 the COVID-19 Deaths by Population Characteristics Over Time dataset has been retired. This dataset is archived and will no longer update. We will be publishing a cumulative deaths by population characteristics dataset that will update moving forward.
A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.
Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
To protect resident privacy, we summarize COVID-19 data by only one characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.
Gender * The City collects information on gender identity using these guidelines.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.
New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
This data may not be immediately available for more recent deaths. Data updates as more information becomes available.
To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.
E. CHANGE LOG
Facebook
TwitterMedical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Definitions:Race/Ethnicity: Race/ethnicity is categorized as: All races/ethnicities, Non-Hispanic (NH) White, NH Black, Asian/Pacific Islander, or Hispanic. "All races" includes all of the above, as well as other and unknown race/ethnicity and American Indian/Alaska Native. The latter two groups are not reported separately due to small numbers for many cancer sites.Racial/Ethnic Composition: Distribution of residents' race/ethnicity (e.g., % Hispanic, % non-Hispanic White, % non-Hispanic Black, % non-Hispanic Asian/Pacific Islander). (Source: US Census, 2010.)Rural: Percent of residents who reside in blocks that are designated as rural. (Source: US Census, 2010.)Foreign Born: Percent of residents who were born outside the United States. (Source: American Community Survey, 2008-2012.)Socioeconomic Status (Neighborhood Level): A composite measure of seven indicator variables created by principal component analysis; indicators include: education, blue-collar job, unemployment, household income, poverty, rent, and house value. Quintiles based on state distribution, with quintile 1 being the lowest SES and 5 being the highest. (Source: American Community Survey, 2008-2012.)Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abbreviation: CCI, charlson comorbidity index.
Facebook
TwitterWeighted percentile group means for demographic and health-related information.
Facebook
TwitterLocally defined dataset containing a full list of patient registrations held within the Trust's EHR system. Details extend to include GP details and patient identifers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains polygons that represent the boundaries of statistical neighborhoods as defined by the DC Department of Health (DC Health). DC Health delineates statistical neighborhoods to facilitate small-area analyses and visualization of health, economic, social, and other indicators to display and uncover disparate outcomes among populations across the city. The neighborhoods are also used to determine eligibility for some health services programs and support research by various entities within and outside of government. DC Health Planning Neighborhood boundaries follow census tract 2010 lines defined by the US Census Bureau. Each neighborhood is a group of between one and seven different, contiguous census tracts. This allows for easier comparison to Census data and calculation of rates per population (including estimates from the American Community Survey and Annual Population Estimates). These do not reflect precise neighborhood locations and do not necessarily include all commonly-used neighborhood designations. There is no formal set of standards that describes which neighborhoods are included in this dataset. Note that the District of Columbia does not have official neighborhood boundaries. Origin of boundaries: each neighborhood is a group of between one and seven different, contiguous census tracts. They were originally determined in 2015 as part of an analytical research project with technical assistance from the Centers for Disease Control and Prevention (CDC) and the Council for State and Territorial Epidemiologists (CSTE) to define small area estimates of life expectancy. Census tracts were grouped roughly following the Office of Planning Neighborhood Cluster boundaries, where possible, and were made just large enough to achieve standard errors of less than 2 for each neighborhood's calculation of life expectancy. The resulting neighborhoods were used in the DC Health Equity Report (2018) with updated names. HPNs were modified slightly in 2019, incorporating one census tract that was consistently suppressed due to low numbers into a neighboring HPN (Lincoln Park incorporated into Capitol Hill). Demographic information were analyzed to identify the bordering group with the most similarities to the single census tract. A second change split a neighborhood (GWU/National Mall) into two to facilitate separate analysis.
Facebook
TwitterThe main objective of a demographic household survey (DHS) is to provide estimates of a number of basic demographic and health variables. This is done through interviews with a scientifically selected probability sample that is chosen from a well-defined population.
The 2007 Nauru Demographic and Health Survey (2007 NDHS) was one of four pilot demographic and health surveys conducted in the Pacific under an Asian Development Bank ADB/ Secretariat of the Pacific Community (SPC) Regional DHS Pilot Project. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Nauru's demographics and health situation. The findings of the 2007 NDHS are very important in measuring the achievements of family planning and other health programmes. To ensure better understanding and use of these data, the results of this survey should be widely disseminated at different planning levels. Different dissemination techniques will be used to reach different segments of society.
The primary purpose of the 2007 NDHS was to furnish policy-makers and planners with detailed information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, and knowledge of HIV and AIDS and other sexually transmitted infections.
NOTE: The only dissemination used was wide distribution of the report. A planned data use workshop was not undertaken. Hence there is some misconceptions and lack of awareness on the results obtained from the survey. The report is provided on the NBOS website free for download.
Version 1.0
DHS questionnaire for women cover the following sections:
The men's questionnaire covers the same except for sections 4, 5, 6 which are not applicable to men.
It was also recognized that some countries have a need for special information that is not contained in the core questionnaire. Separate questionnaire modules were developed on a series of topics. These topics are optional and include:
consanguinity
Collection start: 2007
Collection end: 2007
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1997 the Kyrgyz Republic Demographic and Health Survey (KRDHS) is a nationally representative survey of 3,848 women age 15-49. Fieldwork was conducted from August to November 1997. The KRDHS was sponsored by the Ministry of Health (MOH), and was funded by the United States Agency for International Development. The Research Institute of Obstetrics and Pediatrics implemented the survey with technical assistance from the Demographic and Health Surveys (DHS) program. The purpose of the KRDHS was to provide data to the MOH on factors which determine the health status of women and children such as fertility, contraception, induced abortion, maternal care, infant mortality, nutritional status, and anemia. Some statistics presented in this report are currently available to the MOH from other sources. For example, the MOH collects and regularly publishes information on fertility, contraception, induced abortion and infant mortality. However, the survey presents information on these indices in a manner which is not currently available, i.e., by population subgroups such as those defined by age, marital duration, education, and ethnicity. Additionally, the survey provides statistics on some issues not previously available in the Kyrgyz Republic: for example, breastfeeding practices and anemia status of women and children. When considered together, existing MOH data and the KRDHS data provide a more complete picture of the health conditions in the Kyrgyz Republic than was previously available. A secondary objective of the survey was to enhance the capabilities of institutions in the Kyrgyz Republic to collect, process, and analyze population and health data. MAIN FINDINGS FERTILITY Fertility Rates. Survey results indicate a total fertility rate (TFR) for all of the Kyrgyz Republic of 3.4 children per woman. Fertility levels differ for different population groups. The TFR for women living in urban areas (2.3 children per woman) is substantially lower than for women living in rural areas (3.9). The TFR for Kyrgyz women (3.6 children per woman) is higher than for women of Russian ethnicity (1.5) but lower than Uzbek women (4.2). Among the regions of the Kyrgyz Republic, the TFR is lowest in Bishkek City (1.7 children per woman), and the highest in the East Region (4.3), and intermediate in the North and South Regions (3.1 and3.9, respectively). Time Trends. The KRDHS data show that fertility has declined in the Kyrgyz Republic in recent years. The decline in fertility from 5-9 to 0-4 years prior to the survey increases with age, from an 8 percent decline among 20-24 year olds to a 38 percent decline among 35-39 year olds. The declining trend in fertility can be seen by comparing the completed family size of women near the end of their childbearing years with the current TFR. Completed family size among women 40-49 is 4.6 children which is more than one child greater than the current TFR (3.4). Birth Intervals. Overall, 30 percent of births in the Kyrgyz Republic take place within 24 months of the previous birth. The median birth interval is 31.9 months. Age at Onset of Childbearing. The median age at which women in the Kyrgyz Republic begin childbearing has been holding steady over the past two decades at approximately 21.6 years. Most women have their first birth while in their early twenties, although about 20 percent of women give birth before age 20. Nearly half of married women in the Kyrgyz Republic (45 percent) do not want to have more children. Additional one-quarter of women (26 percent) want to delay their next birth by at least two years. These are the women who are potentially in need of some method of family planning. FAMILY PLANNING Ever Use. Among currently married women, 83 percent report having used a method of contraception at some time. The women most likely to have ever used a method of contraception are those age 30-44 (among both currently married and all women). Current Use. Overall, among currently married women, 60 percent report that they are currently using a contraceptive method. About half (49 percent) are using a modern method of contraception and another 11 percent are using a traditional method. The IUD is by far the most commonly used method; 38 percent of currently married women are using the IUD. Other modern methods of contraception account for only a small amount of use among currently married women: pills (2 percent), condoms (6 percent), and injectables and female sterilization (1 and 2 percent, respectively). Thus, the practice of family planning in the Kyrgyz Republic places high reliance on a single method, the IUD. Source of Methods. The vast majority of women obtain their contraceptives through the public sector (97 percent): 35 percent from a government hospital, and 36 percent from a women counseling center. The source of supply of the method depends on the method being used. For example, most women using IUDs obtain them at women counseling centers (42 percent) or hospitals (39 percent). Government pharmacies supply 46 percent of pill users and 75 percent of condom users. Pill users also obtain supplies from women counseling centers or (33 percent). Fertility Preferences. A majority of women in the Kyrgyz Republic (45 percent) indicated that they desire no more children. By age 25-29, 20 percent want no more children, and by age 30-34, nearly half (46 percent) want no more children. Thus, many women come to the preference to stop childbearing at relatively young ages-when they have 20 or more potential years of childbearing ahead of them. For some of these women, the most appropriate method of contraception may be a long-acting method such as female sterilization. However, there is a deficiency of use of this method in the Kyrgyz Republic. In the interests of providing a broad range of safe and effective methods, information about and access to sterilization should be increased so that individual women can make informed decisions about using this method. INDUCED ABORTION Abortion Rates. From the KRDHS data, the total abortion rate (TAR)-the number of abortions a woman will have in her lifetime based on the currently prevailing abortion rates-was calculated. For the Kyrgyz Republic, the TAR for the period from mid-1994 to mid-1997 is 1.6 abortions per woman. The TAR for the Kyrgyz Republic is lower than recent estimates of the TAR for other areas of the former Soviet Union such as Kazakhstan (1.8), and Yekaterinburg and Perm in Russia (2.3 and 2.8, respectively), but higher than for Uzbekistan (0.7). The TAR is higher in urban areas (2.1 abortions per woman) than in rural areas (1.3). The TAR in Bishkek City is 2.0 which is two times higher than in other regions of the Kyrgyz Republic. Additionally the TAR is substantially lower among ethnic Kyrgyz women (1.3) than among women of Uzbek and Russian ethnicities (1.9 and 2.2 percent, respectively). INFANT MORTALITY In the KRDHS, infant mortality data were collected based on the international definition of a live birth which, irrespective of the duration of pregnancy, is a birth that breathes or shows any sign of life (United Nations, 1992). Mortality Rates. For the five-year period before the survey (i.e., approximately mid-1992 to mid1997), infant mortality in the Kyrgyz Republic is estimated at 61 infant deaths per 1,000 births. The estimates of neonatal and postneonatal mortality are 32 and 30 per 1,000. The MOH publishes infant mortality rates annually but the definition of a live birth used by the MOH differs from that used in the survey. As is the case in most of the republics of the former Soviet Union, a pregnancy that terminates at less than 28 weeks of gestation is considered premature and is classified as a late miscarriage even if signs of life are present at the time of delivery. Thus, some events classified as late miscarriages in the MOH system would be classified as live births and infant deaths according to the definitions used in the KRDHS. Infant mortality rates based on the MOH data for the years 1983 through 1996 show a persistent declining trend throughout the period, starting at about 40 per 1,000 in the early 1980s and declining to 26 per 1,000 in 1996. This time trend is similar to that displayed by the rates estimated from the KRDHS. Thus, the estimates from both the KRDHS and the Ministry document a substantial decline in infant mortality; 25 percent over the period from 1982-87 to 1992-97 according to the KRDHS and 28 percent over the period from 1983-87 to 1993-96 according to the MOH estimates. This is strong evidence of improvements in infant survivorship in recent years in the Kyrgyz Republic. It should be noted that the rates from the survey are much higher than the MOH rates. For example, the KRDHS estimate of 61 per 1,000 for the period 1992-97 is twice the MOH estimate of 29 per 1,000 for 1993-96. Certainly, one factor leading to this difference are the differences in the definitions of a live birth and infant death in the KRDHS survey and in the MOH protocols. A thorough assessment of the difference between the two estimates would need to take into consideration the sampling variability of the survey's estimate. However, given the magnitude of the difference, it is likely that it arises from a combination of definitional and methodological differences between the survey and MOH registration system. MATERNAL AND CHILD HEALTH The Kyrgyz Republic has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. This system includes special delivery hospitals, the obstetrics and gynecology departments of general hospitals, women counseling centers, and doctor's assistant/midwife posts (FAPs). There is an extensive network of FAPs throughout the rural areas. Delivery. Virtually all births in the Kyrgyz Republic (96 percent) are delivered at health facilities: 95 percent in delivery hospitals and another 1 percent in either general hospitals
Facebook
TwitterA. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.
Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.
Data notes on select population characteristic types are listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.
Gender * The City collects information on gender identity using these guidelines.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS).
This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths.
Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.
E. CHANGE LOG
Facebook
TwitterThe 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.
The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5
The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).
The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.
For further details on sample design, see APPENDIX A of the final report.
Face-to-face computer-assisted interviews [capi]
Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.
DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.
From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.
A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
As of January 2024, this is the most recent NHANES dataset whose data collection was not affected by COVID-19.
The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The survey is unique in that it combines interviews and physical examinations. NHANES is a major program of the National Center for Health Statistics (NCHS). NCHS is part of the Centers for Disease Control and Prevention (CDC) and has the responsibility for producing vital and health statistics for the Nation.
The NHANES program began in the early 1960s and has been conducted as a series of surveys focusing on different population groups or health topics. In 1999, the survey became a continuous program that has a changing focus on a variety of health and nutrition measurements to meet emerging needs. The survey examines a nationally representative sample of about 5,000 persons each year. These persons are located in counties across the country, 15 of which are visited each year.
The NHANES interview includes demographic, socioeconomic, dietary, and health-related questions. The examination component consists of medical, dental, and physiological measurements, as well as laboratory tests administered by highly trained medical personnel.
To date, thousands of research findings have been published using the NHANES data.
The 2017-2018 NHANES datasets include the following components:
Blood pressure
Body measures
Muscle strength - grip test
Oral health - dentition
Taste & smell
A complete variable dictionary can be found here
Albumin & Creatinine - Urine
Apolipoprotein B
Blood Lead, Cadmium, Total Mercury, Selenium, and Manganese
Blood mercury: inorganic, ethyl and methyl
Cholesterol - HDL
Cholesterol - LDL & Triglycerides
Cholesterol - Total
Complete Blood Count with 5-part Differential - Whole Blood
Copper, Selenium & Zinc - Serum
Fasting Questionnaire
Fluoride - Plasma
Fluoride - Water
Glycohemoglobin
Hepatitis A
Hepatitis B Surface Antibody
Hepatitis B: core antibody, surface antigen, and Hepatitis D antibody
Hepatitis C RNA (HCV-RNA) and Hepatitis C Genotype
Hepatitis E: IgG & IgM Antibodies
Herpes Simplex Virus Type-1 & Type-2
HIV Antibody Test
Human Papillomavirus (HPV) - Oral Rinse
Human Papillomavirus (HPV) DNA - Vaginal Swab: Roche Cobas & Roche Linear Array
Human Papillomavirus (HPV) DNA Results from Penile Swab Samples: Roche Linear Array
Insulin
Iodine - Urine
Perchlorate, Nitrate & Thiocyanate - Urine
Perfluoroalkyl and Polyfluoroalkyl Substances (formerly Polyfluoroalkyl Chemicals - PFC)
Personal Care and Consumer Product Chemicals and Metabolites
Phthalates and Plasticizers Metabolites - Urine
Plasma Fasting Glucose
Polycyclic Aromatic Hydrocarbons (PAH) - Urine
Standard Biochemistry Profile
Tissue Transglutaminase Assay (IgA-TTG) & IgA Endomyseal Antibody Assay (IgA EMA)
Trichomonas - Urine
Two-hour Oral Glucose Tolerance Test
Urinary Chlamydia
Urinary Mercury
Urinary Speciated Arsenics
Urinary Total Arsenic
Urine Flow Rate
Urine Metals
Urine Pregnancy Test
Vitamin B12
A complete variable dictionary can be found here
Acculturation
Alcohol Use
Blood Pressure & Cholesterol
Cardiovascular Health
Consumer Behavior
Current Health Status
Dermatology
Diabetes
Diet Behavior & Nutrition
Disability
Drug Use
Early Childhood
Food Security
Health Insurance
Hepatitis
Hospital Utilization & Access to Care
Housing Characteristics
Immunization
Income
Medical Conditions
Mental Health - Depression Screener
Occupation
Oral Health
Osteoporosis
Pesticide Use
Physical Activity
Physical Functioning
Preventive Aspirin Us...
Facebook
TwitterThe 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
Facebook
TwitterThe Health and Demographic Surveillance System (HDSS) in Niakhar, a rural area of Senegal, is located 135 km east of Dakar. This HDSS has been set up in 1962 by the Institut de Recherche pour le Développement (IRD) to face the shortcomings of the civil registration system and provide demographic indicators.
Some 65 villages were followed annually in the Niakhar area from 1962 to 1969. The study zone was reduced to eight villages from 1969 to 1983, and from then on the HDSS was extended to include 22 other villages, covering a total of 30 villages for a population estimated at 45,000 in December 2013. Thus 8 villages have been under demographic surveillance for almost 50 years and 30 villages for 30years.
Vital events, migrations, marital changes, pregnancies, immunization are routinely recorded (every four months). The database also includes epidemiological, economic and environmental information coming from specific surveys. Data were collected through annual rounds from 1962 to 1987; rounds became weekly from 1987 to 1997; routine visits were conducted every three months between 1997and 2007 and every four months since then.
The current objectives are 1) to obtain a long-term assessment of demographic and socio-economic indicators necessary for bio-medical and social sciences research, 2) to keep up epidemiological and environmental monitoring, 3) to provide a research platform for clinical and interdisciplinary research (medical, social and environmental sciences). Research projects during the last 5 years are listed in Table 2. The Niakhar HDSS has institutional affiliation with the Institut de Recherche pour le Développement (IRD, formerly ORSTOM).
The study zone of Niakhar is located in Senegal, 14.5ºN Latitude and 16.5ºW Longitude in the department of Fatick (Sine-Saloum), 135 km east of Dakar. The Niakhar study zone covers 203 square kilometres and is located in the continental Sahelian-Sudanese climatic zone. For thirty years the region has suffered from drought. The average annual rainfall has decreased from 800 mm in the 1950s to 500 mm in the 1980s. Increasing amounts of precipitation have been observed since the mid-2000s with an average annual rainfall of 600 mm between 2005 and 2010. The area is 203 square kilometers.
Individual
Members of households reside within the demographic surveillance area. Inmigrants are defined by intention to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than 180 days are censored, except seasonal work migrants, worker with a wife resident, pupils or students. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever resident during the study period (1 Jan 1990 to 31 Dec 2013).
The Niakhar HDSS collects for each resident the following basic data: individual, household and compound identifying information, mother and father identification, relationship to the head of household and spousal relationship. From 1983 to 2007, the HDSS routinely monitored deaths, pregnancies, births, miscarriages, stillbirths, weaning, migrations, changes of marital status, immunizations, and cases of measles and whooping cough. For the last 5 years, the HDSS only recorded demographic events related to each resident including cause of death. Verbal autopsies have been conducted after all deaths except for those that occurred between 1999 and 2004 where only deaths for people aged 0-55 years were investigated. The Niakhar HDSS also registers visitors as well as all the demographic events related to them in case of in-migration. Household characteristics (living conditions, domestic equipment, etc.) were collected in 1998 and 2003, and community equipment (schools, boreholes, etc.) in 2003. Economic and environmental data will be collected in 2013. Table 3 presents further details on the data items collected. The Niakhar HDSS interviewers collect data with tablet PCs that are loaded with the last updated database linked to a user-friendly interface indicating the household members and the questionnaire. Daily backups are performed on an external hard drive and weekly synchronizations are scheduled during the round, helping to update the database and check data consistency (i.e. residential moves within the study area or marriages). Applications are Developed in Visual Basic.Net and the database is managed with Microsoft Access.
Event history data
This dataset contains rounds 1 to 18 of demographic surveillance data covering the period from 1 Jan 1983 to 31 December 2015.
From 1983 to 1987, data were collected through annual rounds during the dry season. Demographic events were collected by interviewers using a printed list of compound residents with their characteristics. From 1987 to 1997, rounds became weekly because of the need for continuous birth registration for vaccine trials. Annual censuses were carried out to check data collection, particularly relative to in- and out-migration. Routine visits were conducted in the 30 villages of the study area every three months between 1997and 2007 and every four months between 2008 and 2012 and every six month since then.
This dataset is not based on a sample; it contains information from the complete demographic surveillence area.
None
Proxy Respondent [proxy]
List of questionnaires:
Compound Registration or update Form Houshold Registration or update Form Household Membership Registration or update Form External Migration Registration Form Internal Migration Registration Form Individual Registration Form Birth Registration Form Death Registration Form
On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.
No imputations were done on the resulting micro data set, except for:
a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an out-migration event (OMG)
In the case of the village that was added (enumerated) in 2006, some individuals may have outmigrated from the original surveillance area and setlled in the the new village prior to the first enumeration. Where the records of such individuals have been linked, and indivdiual can legitmately have and outmigration event (OMG) forllowed by and enumeration event (ENU). In a few cases a homestead exit event (EXT) was followed by an enumeration event in these cases. In these instances the EXT events were changed to an out-migration event (OMG).
On an average the response rate is about 99% over the years for each round
Not Applicable
CentreId MetricTable QMetric Illegal Legal Total Metric RunDate
SN013 MicroDataCleaned Starts 86883 2017-05-19 15:12
SN013 MicroDataCleaned Transitions 241970 241970 0 2017-05-19 15:12
SN013 MicroDataCleaned Ends 86883 2017-05-19 15:12
SN013 MicroDataCleaned SexValues 32 241938 241970 0 2017-05-19 15:12
SN013 MicroDataCleaned DoBValues 241970 2017-05-19 15:12
Facebook
TwitterLife satisfaction (mean) by demographic, socioeconomic and health related variables (N = 1500).
Facebook
TwitterThe Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.
The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:
The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.
The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.
The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.
The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.
The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.
A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.
In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.
Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that
Facebook
TwitterDemographic and health characteristics of PURSE-HIS cohort stratified by sex and community type as defined by census designation (n = 6166).
Facebook
TwitterKersa Health and Demographic Surveillance System (Kersa HDSS) is located in Kersa district of eastern Hararege, Oromia region, Eastern Ethiopia. It was established in 2007 with the vision of becoming center of excellence in health science research in Ethiopia. It conducts health and demographic surveillance. The major work on the ground are monitoring demographic altering events such as birth, death, and migration; and health related conditions such as pregnancy, immunization, and morbidity. It also conducts verbal autopsy for the deceased to identify causes of death.
Kersa HDSS was established in 12 sub-districts of Kersa district, Eastern Hararghe, Oromia Region, Ethiopia. The site is principally rural with three small towns (Kersa, Weter and Langhe). The baseline census was conducted in 2007 and since then has been updated every six months, with registration of demographic and health events. Data is entered into the HRS-2 relational database. At baseline a total of 10,085 houses, 10,522 households and 50,830 people were registered. The sex ratio and number of persons per household was 1.0 and 5.1, respectively. At the end of 2016 the population was 130,358. Until the end of 2016, 20,935 births and 5,195 deaths were registered, respectively.
Kersa district of eastern Hararege, Oromia region, Eastern Ethiopia
Individual
Resident household members of households resident within the demographic surveillance area. Inmigrations are defined by iteration to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by iteration to become resident elsewhere, but actual periods of non- residence less than 180 days are censored. Children born to be resident women are considered resident by default irrespective of actual place of birth.
The dataset contains the events of all individuals ever resident during the study period (1 Jan 2008 to 31 Dec 2014).
Event history data
Two rounds of data collection took place annually.
This dataset is not based on a sample, it contains information from the complete demographic survillance area.
Not Applicable
Proxy Respondent [proxy]
Economic Status Registration Form
Pregnancy Surveillance Form
Pregnancy Outcome Registration Form
Death Registration Form
Verbal Autopsy Registration Form (WHO-2012)
Inmigration Registration Form
Outmigration Registration Form
Marital Status Registration Form
Child Morbidity Registration Form
Adult Morbidity Registration Form
Child Immunization Registration Form
Family Planning Registration Form
On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.
No imputations were done on the resulting micro data set, except for:
a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an out-migration event (OMG)
In the case of the village that was added (enumerated) in 2006, some individuals may have outmigrated from the original surveillance area and setlled in the the new village prior to the first enumeration. Where the records of such individuals have been linked, and indivdiual can legitmately have and outmigration event (OMG) forllowed by and enumeration event (ENU). In a few cases a homestead exit event (EXT) was followed by an enumeration event in these cases. In these instances the EXT events were changed to an out-migration event (OMG).
The response rate for the surveillance activities is 100%.
Not applicable
CentreId MetricTable QMetric Illegal Legal Total Metric RunDate
ET041 MicroDataCleaned Starts 144997 2017-05-21 15:59
ET041 MicroDataCleaned Transitions 0 301608 301608 0 2017-05-21 15:59
ET041 MicroDataCleaned Ends 144997 2017-05-21 15:59
ET041 MicroDataCleaned SexValues 301608 2017-05-21 15:59
ET041 MicroDataCleaned DoBValues 301608 2017-05-21 15:59
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset presents information on the mean age of fertility of births for women between ages 15 to 49. The indicator is defined as the average age at which women give birth.