Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The US Family Budget Dataset provides insights into the cost of living in different US counties based on the Family Budget Calculator by the Economic Policy Institute (EPI).
This dataset offers community-specific estimates for ten family types, including one or two adults with zero to four children, in all 1877 counties and metro areas across the United States.
If you find this dataset valuable, don't forget to hit the upvote button! 😊💝
Employment-to-Population Ratio for USA
Productivity and Hourly Compensation
USA Unemployment Rates by Demographics & Race
Photo by Alev Takil on Unsplash
Facebook
TwitterIn 2024, the CPI in U.S. cities averaged at 313.7. However, the CPI for the New York-Newark-Jersey City metropolitan area amounted to about 334.21. Prices in New York City were significantly higher than the U.S. average. Nonetheless, the San Diego-Carlsbad area ranked first with a CPI of 373.32.The monthly inflation rate for the United States can be found here.
Facebook
TwitterOf the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Thumbnail Image by macrovector_official on Freepik
Missouri Economic Research and Information Center (MERIC) derives the cost of living index for each state by averaging the indices of participating cities and metropolitan areas in that state.
In general, the most expensive areas to live were Hawaii, Alaska, the Northeast, and the West Coast. The least expensive areas were the Midwest and Southern states.
Cities across the nation participate in the Council for Community & Economic Research (C2ER) survey on a volunteer basis. Price information in the survey is governed by C2ER collection guidelines which strive for uniformity.
The entries for Ontario, British Columbia, and Remote were added manually for my use case.
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for St. Louis city, MO (MWACL29510) from 2009 to 2023 about St. Louis City, MO; St. Louis; adjusted; MO; average; wages; real; and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map shows the median household income in the United States in 2012. Information for the 2012 Median Household Income is an estimate of income for calendar year 2012. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases. The median is the value that divides the distribution of household income into two equal parts. The median household income in the United States overall was $50,157 in 2012. This map shows Esri's 2012 estimates using Census 2010 geographies.
The geography depicts States at greater than 50m scale, Counties at 7.5m to 50m scale, Census Tracts at 200k to 7.5m scale, and Census Block Groups at less than 200k scale.
Scale Range: 1:591,657,528 down to 1:72,224.
For more information on this map, including the terms of use, visit us online.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising various variables around housing and demographics for the top 50 American cities by population.
Variables:
Zip Code: Zip code within which the listing is present.
Price: Listed price for the property.
Beds: Number of beds mentioned in the listing.
Baths: Number of baths mentioned in the listing.
Living Space: The total size of the living space, in square feet, mentioned in the listing.
Address: Street address of the listing.
City: City name where the listing is located.
State: State name where the listing is located.
Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.
Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.
County: County where the listing is located.
Median Household income: Estimated median household income. Data from the U.S. Census Bureau.
Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**
Longitude: Longitude of the zip code. Data from Simplemaps.com.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Canadian County, OK (MWACL40017) from 2009 to 2023 about Canadian County, OK; Oklahoma City; OK; adjusted; average; wages; real; and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table with information about metropolitan areas in the United States. This data was gathered as part of the project US Cities which is uploaded on my GitHub.
The columns are: - Population, - Average Rental Price, - Median Rental Price, - Unemployment Rate, - Per Capita Income, - Air Quality, - Walk, Transit, and Bike Scores, - Cost of Living, - Price Parity, - Median Commute Time, - Latitude, Longitude.
Facebook
TwitterThis table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Ada County, ID (MWACL16001) from 2009 to 2023 about Ada County, ID; Boise City; ID; adjusted; average; wages; real; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Richmond city, VA (MWACL51760) from 2009 to 2023 about Richmond City, VA; Richmond; adjusted; VA; average; wages; real; and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Cost of International Education dataset compiles detailed financial information for students pursuing higher education abroad. It covers multiple countries, cities, and universities around the world, capturing the full tuition and living expenses spectrum alongside key ancillary costs. With standardized fields such as tuition in USD, living-cost indices, rent, visa fees, insurance, and up-to-date exchange rates, it enables comparative analysis across programs, degree levels, and geographies. Whether you’re a prospective international student mapping out budgets, an educational consultant advising on affordability, or a researcher studying global education economics, this dataset offers a comprehensive foundation for data-driven insights.
| Column | Type | Description |
|---|---|---|
| Country | string | ISO country name where the university is located (e.g., “Germany”, “Australia”). |
| City | string | City in which the institution sits (e.g., “Munich”, “Melbourne”). |
| University | string | Official name of the higher-education institution (e.g., “Technical University of Munich”). |
| Program | string | Specific course or major (e.g., “Master of Computer Science”, “MBA”). |
| Level | string | Degree level of the program: “Undergraduate”, “Master’s”, “PhD”, or other certifications. |
| Duration_Years | integer | Length of the program in years (e.g., 2 for a typical Master’s). |
| Tuition_USD | numeric | Total program tuition cost, converted into U.S. dollars for ease of comparison. |
| Living_Cost_Index | numeric | A normalized index (often based on global city indices) reflecting relative day-to-day living expenses (food, transport, utilities). |
| Rent_USD | numeric | Average monthly student accommodation rent in U.S. dollars. |
| Visa_Fee_USD | numeric | One-time visa application fee payable by international students, in U.S. dollars. |
| Insurance_USD | numeric | Annual health or student insurance cost in U.S. dollars, as required by many host countries. |
| Exchange_Rate | numeric | Local currency units per U.S. dollar at the time of data collection—vital for currency conversion and trend analysis if rates fluctuate. |
Feel free to explore, visualize, and extend this dataset for deeper insights into the true cost of studying abroad!
Facebook
TwitterVITAL SIGNS INDICATOR Poverty (EQ5)
FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED December 2018
DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)
U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov
METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html
For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for San Francisco County/city, CA (MWACL06075) from 2009 to 2023 about San Francisco County/City, CA; San Francisco; adjusted; average; wages; CA; real; and USA.
Facebook
TwitterAs of July 2025, the cost of living in Barrancabermeja was the highest among major Colombian cities. In total, the average cost per month amounted to *** U.S. dollars. Medellín followed in the ranking, with a monthly cost of living of *** U.S. dollars at that time.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Salt Lake County, UT (MWACL49035) from 2009 to 2023 about Salt Lake County, UT; Salt Lake City; UT; adjusted; average; wages; real; and USA.
Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.