CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
In late 1996, the Dept of Conservation (DOC) surveyed state and federal agencies about the county boundary coverage they used. As a result, DOC adopted the 1:24,000 (24K) scale U.S. Bureau of Reclamation (USBR) dataset (USGS source) for their Farmland Mapping and Monitoring Program (FMMP) but with several modifications. Detailed documentation of these changes is provided by FMMP and included in the lineage section of the metadata. A dataset named cnty24k97_1 was made available (approximately 2004) through the California Department of Forestry and Fire Protection - Fire and Resource Assessment Program (CDF - FRAP) and the California Spatial Information Library (CaSIL).In late 2006, the Department of Fish and Game (DFG) reviewed cnty24k97_1. Comparisons were made to a high-quality 100K dataset (co100a/county100k from the former Teale Data Center GIS Solutions Group) and legal boundary descriptions from ( http://www.leginfo.ca.gov ). The cnty24k97_1 dataset was missing Anacapa and Santa Barbara islands. DFG added the missing islands using previously-digitized coastline data (coastn27 of State Lands Commission origin), corrected a few county boundaries, built region topology, added additional attributes, and renamed the dataset to county24k.In 2007, the California Mapping Coordinating Committee (CMCC) requested that the California Department of Forestry and Fire Protection (CAL FIRE) resume stewardship of the statewide county boundaries data. CAL FIRE adopted the changes made by DFG and collected additional suggestions for the county data from DFG, DOC, and local government agencies. CAL FIRE incorporated these suggestions into the latest revision, which has been renamed cnty24k09_1. Detailed documentation of changes is included in the Process Step section of the metadata.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This shapefile contains tax rate area (TRA) boundaries in Mendocino County for the specified assessment roll year. Boundary alignment is based on the 2021 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Feature Names Relationship File (FEATNAMES.dbf) contains a record for each feature name and any attributes associated with it. Each feature name can be linked to the corresponding edges that make up that feature in the All Lines Shapefile (EDGES.shp), where applicable to the corresponding address range or ranges in the Address Ranges Relationship File (ADDR.dbf), or to both files. Although this file includes feature names for all linear features, not just road features, the primary purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute, which can be used to link to the Address Ranges Relationship File (ADDR.dbf). The linear feature is identified by the linear feature identifier (LINEARID) attribute, which can be used to relate the address range back to the name attributes of the feature in the Feature Names Relationship File or to the feature record in the Primary Roads, Primary and Secondary Roads, or All Roads Shapefiles. The edge to which a feature name applies can be determined by linking the feature name record to the All Lines Shapefile (EDGES.shp) using the permanent edge identifier (TLID) attribute. The address range identifier(s) (ARID) for a specific linear feature can be found by using the linear feature identifier (LINEARID) from the Feature Names Relationship File (FEATNAMES.dbf) through the Address Range / Feature Name Relationship File (ADDRFN.dbf).
The Campbell Creek planning watershed is in Mendocino County, California. This map shows all the Calwater 2.2.1 planning watersheds within Mendocino County
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
A high resolution LiDAR derived hillshade facilitates the visualization of the topography of a landscape at a variety of scales. This layer may be used on its own or in conjunction with other data. This hillshade which was created from a LiDAR derived highest hit digital elevation model shows the signal returns that were the highest above the ground in a given location. This provides the viewer a hillshade display of the tree canopy or structures at the time of data capture. The Sonoma County Vegetation Mapping and LiDAR Program and the University of Maryland (under grant NNX13AP69G from NASA’s Carbon Monitoring System, Dr. Ralph Dubayah, PI) contracted LiDAR and orthophoto data collection for all of Sonoma County in late 2013. Also included in the data collection were two areas in Mendocino County - the Soda Spring Creek-Dry Creek Watershed and Lake Mendocino. This fine scale data will help provide an accurate, up-to-date inventory of the county’s landscape features, ecological communities and habitats. Project funders include: NASA, the University of Maryland, the Sonoma County Agricultural Preservation and Open Space District, the Sonoma County Water Agency, the California Department of Fish and Wildlife, the United States Geological Survey, the Sonoma County Information Systems Department, the Sonoma County Transportation and Public Works Department, the Nature Conservancy, and the City of Petaluma.Hillshade of the highest hit digital elevation model using the Sonoma Veg Map LiDAR data. The Mosaic hillshade function was applied to generate this hillshade. The default values were used except for the Z value. A value of .4 was used for the Z value. The raster cache was generated from the previous item.The DEM used to create this hillshade is described as a Highest Hit or First Return digital elevation model (DEM) represents the earth’s surface with the base or bare-earth DEM values subtracted from the first returns, with the resulting raster being the height of any vegetation, structure, or the ground for those areas lacking in vegetation or structures for the subject area. Values are in feet. Each cell in the GRID is three feet and has a value that represents an average vegetation height at that location. The purpose of the data is to provide users with a very accurate view of the vegetation height in the subject area for the date of data capture.
The Nature Conservancy (TNC) contracted Aerial Information Systems, Inc (AIS) to develop a vegetation map covering approximately 23,800 acres (~37 square miles) of the Garcia River Watershed east of Point Arena. The mapping area is split by the north coast and outer north coast range floristic provinces as defined by The Jepson Manual - Higher Plants of California, Hickman.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
A high resolution LiDAR derived hillshade facilitates the visualization of the topography of a landscape at a variety of scales. This hillshade which was created from a LiDAR derived hydro-flattened bare earth digital elevation model shows the signal returns without any vegetation or human-made structures. In addition to that, bodies of water have been smoothed. This layer may be used on its own or in conjunction with other data.The Sonoma County Vegetation Mapping and LiDAR Program. and the University of Maryland (under grant NNX13AP69G from NASA’s Carbon Monitoring System, Dr. Ralph Dubayah, PI) contracted LiDAR and orthophoto data collection for all of Sonoma County in late 2013. Also included in the data collection were two areas in Mendocino County - the Soda Spring Creek-Dry Creek Watershed and Lake Mendocino. This fine scale data will help provide an accurate, up-to-date inventory of the county’s landscape features, ecological communities and habitats. Project funders include: NASA, the University of Maryland, the Sonoma County Agricultural Preservation and Open Space District, the Sonoma County Water Agency, the California Department of Fish and Wildlife, the United States Geological Survey, the Sonoma County Information Systems Department, the Sonoma County Transportation and Public Works Department, the Nature Conservancy, and the City of Petaluma.The hillshade is a greyscale image showing topography in the landscape. In this case it is created from a LiDAR derived hydro-flattened bare earth digital elevation model illuminated by hypothetical light source shining from the north west. A hydro flattened bare earth digital elevation model (DEM) represents the earth's surface with all vegetation and human-made structures removed. In addition bodies of waters 2acres or larger have been smoothed.The DEM used to create this hillshade is described as a bare earth digital elevation model (DEM) representing the earth's surface with all vegetation and human-made structures removed. The bare earth DEMs were derived from LiDAR data using triangulated irregular network (TIN) processing of the ground point returns. Each image corresponds to a 37,800-square-foot tile. Each pixel is 3 feet and represents an average elevation for that area.
A bare earth digital elevation model (DEM) represents the earth's surface with all vegetation and human-made structures removed. The bare earth DEMs were derived from LiDAR data using triangulated irregular network (TIN) processing of the ground point returns. Hydro-flattened Bare Earth DEMs represent water bodies in a cartographically and aesthetically pleasing manner, and are not intended to accurately map water surface elevations. In a Hydro-flattened DEM, water surfaces are flat and level for lakes with a greater area than two acres, and gradated for rivers or other long impoundments (e.g., reservoirs) that are wider than 100 feet, and tidal areas. Any existing island larger than one acre was be delineated. Water surface edge elevations were at or below the immediately surrounding terrain. Each image corresponds to a 37,800-square-foot tile. Each pixel is 3 feet and represents an average elevation for that area. The specified coordinate system for this dataset is California State Plane Zone II (FIPS 0402), NAD83 (2011), with units in US Survey Feet for horizontal, and vertical units are NAVD88 (12A) US Survey Feet. The dataset encompasses all of Sonoma County and parts of Mendocino County. WSI collected the LiDAR and created this data set for the Sonoma County Vegetation Mapping and LiDAR Program.Data hosted by Sonoma County Information Systems Department (ISD).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.