34 datasets found
  1. MERGE Dataset

    • zenodo.org
    zip
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

    • MERGE Audio Complete: 3554
    • MERGE Audio Balanced: 3232
    • MERGE Lyrics Complete: 2568
    • MERGE Lyrics Balanced: 2400
    • MERGE Bimodal Complete: 2216
    • MERGE Bimodal Balanced: 2000

    Additional Contents

    Each dataset contains the following additional files:

    • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
    • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

    Metadata

    A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

    • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
    • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
    • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
    • Artist - First performing artist or band;
    • Title - Song title;
    • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
    • Duration - Song length in seconds;
    • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
    • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
    • Genres - User-generated genre tags extracted from the AllMusic platform;
    • Themes - User-generated theme tags extracted from the AllMusic platform;
    • Styles - User-generated style tags extracted from the AllMusic platform;
    • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
    • Sample - Availability of the sample in the AllMusic platform;
    • SampleURL - URL to the 30-second excerpt in AllMusic;
    • ActualYear - Year of song release.

    Citation

    If you use some part of the MERGE dataset in your research, please cite the following article:

    Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

    BibTeX:

    @misc{louro2024mergebimodaldataset,
    title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
    author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
    year={2024},
    eprint={2407.06060},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    url={https://arxiv.org/abs/2407.06060},
    }

    Acknowledgements

    This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

    Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

  2. NSF/NCAR GV HIAPER 1 Minute Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NSF/NCAR GV HIAPER 1 Minute Data Merge [Dataset]. http://doi.org/10.26023/R1RA-JHKZ-W913
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 30, 2012
    Area covered
    Description

    This data set contains NSF/NCAR GV HIAPER 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 30 June 2012. These are updated merges from the NASA DC3 archive that were made available 13 June 2014. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg60-gV_merge_YYYYMMdd_R5_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  3. e

    Merger of BNV-D data (2008 to 2019) and enrichment

    • data.europa.eu
    zip
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick VINCOURT, Merger of BNV-D data (2008 to 2019) and enrichment [Dataset]. https://data.europa.eu/data/datasets/5f1c3eca9d149439e50c740f
    Explore at:
    zip(18530465)Available download formats
    Dataset authored and provided by
    Patrick VINCOURT
    Description

    Merging (in Table R) data published on https://www.data.gouv.fr/fr/datasets/ventes-de-pesticides-par-departement/, and joining two other sources of information associated with MAs: — uses: https://www.data.gouv.fr/fr/datasets/usages-des-produits-phytosanitaires/ — information on the “Biocontrol” status of the product, from document DGAL/SDQSPV/2020-784 published on 18/12/2020 at https://agriculture.gouv.fr/quest-ce-que-le-biocontrole

    All the initial files (.csv transformed into.txt), the R code used to merge data and different output files are collected in a zip. enter image description here NB: 1) “YASCUB” for {year,AMM,Substance_active,Classification,Usage,Statut_“BioConttrol”}, substances not on the DGAL/SDQSPV list being coded NA. 2) The file of biocontrol products shall be cleaned from the duplicates generated by the marketing authorisations leading to several trade names.
    3) The BNVD_BioC_DY3 table and the output file BNVD_BioC_DY3.txt contain the fields {Code_Region,Region,Dept,Code_Dept,Anne,Usage,Classification,Type_BioC,Quantite_substance)}

  4. NASA DC-8 10 Second Data Merge

    • data.ucar.edu
    archive
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 10 Second Data Merge [Dataset]. http://doi.org/10.26023/CHJ0-RYQ4-GR10
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 22, 2012
    Area covered
    Description

    This data set contains NASA DC-8 10 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merges are an updated version provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg10-dc8_merge_YYYYMMdd_R*_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments. For the latest information on the updates to this dataset, please see the readme file.

  5. Data from: KORUS-AQ Aircraft Merge Data Files

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA/LARC/SD/ASDC (2025). KORUS-AQ Aircraft Merge Data Files [Dataset]. https://catalog.data.gov/dataset/korus-aq-aircraft-merge-data-files
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    KORUSAQ_Merge_Data are pre-generated merge data files combining various products collected during the KORUS-AQ field campaign. This collection features pre-generated merge files for the DC-8 aircraft. Data collection for this product is complete.The KORUS-AQ field study was conducted in South Korea during May-June, 2016. The study was jointly sponsored by NASA and Korea’s National Institute of Environmental Research (NIER). The primary objectives were to investigate the factors controlling air quality in Korea (e.g., local emissions, chemical processes, and transboundary transport) and to assess future air quality observing strategies incorporating geostationary satellite observations. To achieve these science objectives, KORUS-AQ adopted a highly coordinated sampling strategy involved surface and airborne measurements including both in-situ and remote sensing instruments.Surface observations provided details on ground-level air quality conditions while airborne sampling provided an assessment of conditions aloft relevant to satellite observations and necessary to understand the role of emissions, chemistry, and dynamics in determining air quality outcomes. The sampling region covers the South Korean peninsula and surrounding waters with a primary focus on the Seoul Metropolitan Area. Airborne sampling was primarily conducted from near surface to about 8 km with extensive profiling to characterize the vertical distribution of pollutants and their precursors. The airborne observational data were collected from three aircraft platforms: the NASA DC-8, NASA B-200, and Hanseo King Air. Surface measurements were conducted from 16 ground sites and 2 ships: R/V Onnuri and R/V Jang Mok.The major data products collected from both the ground and air include in-situ measurements of trace gases (e.g., ozone, reactive nitrogen species, carbon monoxide and dioxide, methane, non-methane and oxygenated hydrocarbon species), aerosols (e.g., microphysical and optical properties and chemical composition), active remote sensing of ozone and aerosols, and passive remote sensing of NO2, CH2O, and O3 column densities. These data products support research focused on examining the impact of photochemistry and transport on ozone and aerosols, evaluating emissions inventories, and assessing the potential use of satellite observations in air quality studies.

  6. NASA DC-8 SAGAAERO Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 SAGAAERO Data Merge [Dataset]. http://doi.org/10.26023/ANQE-HZRR-P30K
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 22, 2012
    Area covered
    Description

    This data set contains NASA DC-8 SAGAAERO Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merge files were updated by NASA. The data have been merged to SAGAAero file timeline. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrgSAGAAero-dc8_merge_YYYYMMdd_R*_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  7. n

    Multilevel modeling of time-series cross-sectional data reveals the dynamic...

    • data.niaid.nih.gov
    • dataone.org
    • +2more
    zip
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kodai Kusano (2020). Multilevel modeling of time-series cross-sectional data reveals the dynamic interaction between ecological threats and democratic development [Dataset]. http://doi.org/10.5061/dryad.547d7wm3x
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    University of Nevada, Reno
    Authors
    Kodai Kusano
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    What is the relationship between environment and democracy? The framework of cultural evolution suggests that societal development is an adaptation to ecological threats. Pertinent theories assume that democracy emerges as societies adapt to ecological factors such as higher economic wealth, lower pathogen threats, less demanding climates, and fewer natural disasters. However, previous research confused within-country processes with between-country processes and erroneously interpreted between-country findings as if they generalize to within-country mechanisms. In this article, we analyze a time-series cross-sectional dataset to study the dynamic relationship between environment and democracy (1949-2016), accounting for previous misconceptions in levels of analysis. By separating within-country processes from between-country processes, we find that the relationship between environment and democracy not only differs by countries but also depends on the level of analysis. Economic wealth predicts increasing levels of democracy in between-country comparisons, but within-country comparisons show that democracy declines as countries become wealthier over time. This relationship is only prevalent among historically wealthy countries but not among historically poor countries, whose wealth also increased over time. By contrast, pathogen prevalence predicts lower levels of democracy in both between-country and within-country comparisons. Our longitudinal analyses identifying temporal precedence reveal that not only reductions in pathogen prevalence drive future democracy, but also democracy reduces future pathogen prevalence and increases future wealth. These nuanced results contrast with previous analyses using narrow, cross-sectional data. As a whole, our findings illuminate the dynamic process by which environment and democracy shape each other.

    Methods Our Time-Series Cross-Sectional data combine various online databases. Country names were first identified and matched using R-package “countrycode” (Arel-Bundock, Enevoldsen, & Yetman, 2018) before all datasets were merged. Occasionally, we modified unidentified country names to be consistent across datasets. We then transformed “wide” data into “long” data and merged them using R’s Tidyverse framework (Wickham, 2014). Our analysis begins with the year 1949, which was occasioned by the fact that one of the key time-variant level-1 variables, pathogen prevalence was only available from 1949 on. See our Supplemental Material for all data, Stata syntax, R-markdown for visualization, supplemental analyses and detailed results (available at https://osf.io/drt8j/).

  8. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  9. Merge script

    • figshare.com
    txt
    Updated May 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Aguasvivas; Jon Andoni Duñabeitia (2018). Merge script [Dataset]. http://doi.org/10.6084/m9.figshare.5924797.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jose Aguasvivas; Jon Andoni Duñabeitia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Script in R language to load the databases and merge them into an unique file. This script may be modified and extended as needed.

  10. H

    National Health and Nutrition Examination Survey (NHANES)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). National Health and Nutrition Examination Survey (NHANES) [Dataset]. http://doi.org/10.7910/DVN/IMWQPJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the national health and nutrition examination survey (nhanes) with r nhanes is this fascinating survey where doctors and dentists accompany survey interviewers in a little mobile medical center that drives around the country. while the survey folks are interviewing people, the medical professionals administer laboratory tests and conduct a real doctor's examination. the b lood work and medical exam allow researchers like you and me to answer tough questions like, "how many people have diabetes but don't know they have diabetes?" conducting the lab tests and the physical isn't cheap, so a new nhanes data set becomes available once every two years and only includes about twelve thousand respondents. since the number of respondents is so small, analysts often pool multiple years of data together. the replication scripts below give a few different examples of how multiple years of data can be pooled with r. the survey gets conducted by the centers for disease control and prevention (cdc), and generalizes to the united states non-institutional, non-active duty military population. most of the data tables produced by the cdc include only a small number of variables, so importation with the foreign package's read.xport function is pretty straightforward. but that makes merging the appropriate data sets trickier, since it might not be clear what to pull for which variables. for every analysis, start with the table with 'demo' in the name -- this file includes basic demographics, weighting, and complex sample survey design variables. since it's quick to download the files directly from the cdc's ftp site, there's no massive ftp download automation script. this new github repository co ntains five scripts: 2009-2010 interview only - download and analyze.R download, import, save the demographics and health insurance files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the interview weights run a series of pretty generic analyses on the health insurance ques tions 2009-2010 interview plus laboratory - download and analyze.R download, import, save the demographics and cholesterol files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the mobile examination component (mec) weights perform a direct-method age-adjustment and matc h figure 1 of this cdc cholesterol brief replicate 2005-2008 pooled cdc oral examination figure.R download, import, save, pool, recode, create a survey object, run some basic analyses replicate figure 3 from this cdc oral health databrief - the whole barplot replicate cdc publications.R download, import, save, pool, merge, and recode the demographics file plus cholesterol laboratory, blood pressure questionnaire, and blood pressure laboratory files match the cdc's example sas and sudaan syntax file's output for descriptive means match the cdc's example sas and sudaan synta x file's output for descriptive proportions match the cdc's example sas and sudaan syntax file's output for descriptive percentiles replicate human exposure to chemicals report.R (user-contributed) download, import, save, pool, merge, and recode the demographics file plus urinary bisphenol a (bpa) laboratory files log-transform some of the columns to calculate the geometric means and quantiles match the 2007-2008 statistics shown on pdf page 21 of the cdc's fourth edition of the report click here to view these five scripts for more detail about the national health and nutrition examination survey (nhanes), visit: the cdc's nhanes homepage the national cancer institute's page of nhanes web tutorials notes: nhanes includes interview-only weights and interview + mobile examination component (mec) weights. if you o nly use questions from the basic interview in your analysis, use the interview-only weights (the sample size is a bit larger). i haven't really figured out a use for the interview-only weights -- nhanes draws most of its power from the combination of the interview and the mobile examination component variables. if you're only using variables from the interview, see if you can use a data set with a larger sample size like the current population (cps), national health interview survey (nhis), or medical expenditure panel survey (meps) instead. confidential to sas, spss, stata, sudaan users: why are you still riding around on a donkey after we've invented the internal combustion engine? time to transition to r. :D

  11. Data from: A dataset to model Levantine landcover and land-use change...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Kempf; Michael Kempf (2023). A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.10396148
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael Kempf; Michael Kempf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 16, 2023
    Area covered
    Levant
    Description

    Overview

    This dataset is the repository for the following paper submitted to Data in Brief:

    Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).

    The Data in Brief article contains the supplement information and is the related data paper to:

    Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).

    Description/abstract

    The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.

    Folder structure

    The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:

    “code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.

    “MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.

    “mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).

    “yield_productivity” contains .csv files of yield information for all countries listed above.

    “population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).

    “GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.

    “built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.

    Code structure

    1_MODIS_NDVI_hdf_file_extraction.R


    This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.


    2_MERGE_MODIS_tiles.R


    In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").


    3_CROP_MODIS_merged_tiles.R


    Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
    The repository provides the already clipped and merged NDVI datasets.


    4_TREND_analysis_NDVI.R


    Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
    To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.


    5_BUILT_UP_change_raster.R


    Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.


    6_POPULATION_numbers_plot.R


    For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.


    7_YIELD_plot.R


    In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.


    8_GLDAS_read_extract_trend


    The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
    Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
    From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
    From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.

  12. H

    Survey of Income and Program Participation (SIPP)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Survey of Income and Program Participation (SIPP) [Dataset]. http://doi.org/10.7910/DVN/I0FFJV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the survey of income and program participation (sipp) with r if the census bureau's budget was gutted and only one complex sample survey survived, pray it's the survey of income and program participation (sipp). it's giant. it's rich with variables. it's monthly. it follows households over three, four, now five year panels. the congressional budget office uses it for their health insurance simulation . analysts read that sipp has person-month files, get scurred, and retreat to inferior options. the american community survey may be the mount everest of survey data, but sipp is most certainly the amazon. questions swing wild and free through the jungle canopy i mean core data dictionary. legend has it that there are still species of topical module variables that scientists like you have yet to analyze. ponce de león would've loved it here. ponce. what a name. what a guy. the sipp 2008 panel data started from a sample of 105,663 individuals in 42,030 households. once the sample gets drawn, the census bureau surveys one-fourth of the respondents every four months, over f our or five years (panel durations vary). you absolutely must read and understand pdf pages 3, 4, and 5 of this document before starting any analysis (start at the header 'waves and rotation groups'). if you don't comprehend what's going on, try their survey design tutorial. since sipp collects information from respondents regarding every month over the duration of the panel, you'll need to be hyper-aware of whether you want your results to be point-in-time, annualized, or specific to some other period. the analysis scripts below provide examples of each. at every four-month interview point, every respondent answers every core question for the previous four months. after that, wave-specific addenda (called topical modules) get asked, but generally only regarding a single prior month. to repeat: core wave files contain four records per person, topical modules contain one. if you stacked every core wave, you would have one record per person per month for the duration o f the panel. mmmassive. ~100,000 respondents x 12 months x ~4 years. have an analysis plan before you start writing code so you extract exactly what you need, nothing more. better yet, modify something of mine. cool? this new github repository contains eight, you read me, eight scripts: 1996 panel - download and create database.R 2001 panel - download and create database.R 2004 panel - download and create database.R 2008 panel - download and create database.R since some variables are character strings in one file and integers in anoth er, initiate an r function to harmonize variable class inconsistencies in the sas importation scripts properly handle the parentheses seen in a few of the sas importation scripts, because the SAScii package currently does not create an rsqlite database, initiate a variant of the read.SAScii function that imports ascii data directly into a sql database (.db) download each microdata file - weights, topical modules, everything - then read 'em into sql 2008 panel - full year analysis examples.R< br /> define which waves and specific variables to pull into ram, based on the year chosen loop through each of twelve months, constructing a single-year temporary table inside the database read that twelve-month file into working memory, then save it for faster loading later if you like read the main and replicate weights columns into working memory too, merge everything construct a few annualized and demographic columns using all twelve months' worth of information construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half, again save it for faster loading later, only if you're so inclined reproduce census-publish ed statistics, not precisely (due to topcoding described here on pdf page 19) 2008 panel - point-in-time analysis examples.R define which wave(s) and specific variables to pull into ram, based on the calendar month chosen read that interview point (srefmon)- or calendar month (rhcalmn)-based file into working memory read the topical module and replicate weights files into working memory too, merge it like you mean it construct a few new, exciting variables using both core and topical module questions construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half reproduce census-published statistics, not exactly cuz the authors of this brief used the generalized variance formula (gvf) to calculate the margin of error - see pdf page 4 for more detail - the friendly statisticians at census recommend using the replicate weights whenever possible. oh hayy, now it is. 2008 panel - median value of household assets.R define which wave(s) and spe cific variables to pull into ram, based on the topical module chosen read the topical module and replicate weights files into working memory too, merge once again construct a replicate-weighted complex sample design with a...

  13. merge_factors.RData

    • springernature.figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rat Genome Sequencing and Mapping Consortium; Amelie Baud (2023). merge_factors.RData [Dataset]. http://doi.org/10.6084/m9.figshare.943485_D7
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Rat Genome Sequencing and Mapping Consortium; Amelie Baud
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    sequence variants (SNPs and indels) in all eight founder strains of the Heterogeneous Stock, formatted in an R object for merge analysis

  14. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  15. R-code for publication: Ensembles of Ensembles: Combining the Predictions...

    • zenodo.org
    • data.niaid.nih.gov
    bin, txt
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Lieske; Moritz Schmid; Matthew Mahoney; David Lieske; Moritz Schmid; Matthew Mahoney (2020). R-code for publication: Ensembles of Ensembles: Combining the Predictions from Multiple Machine Learning Methods [Dataset]. http://doi.org/10.5281/zenodo.1318352
    Explore at:
    bin, txtAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Lieske; Moritz Schmid; Matthew Mahoney; David Lieske; Moritz Schmid; Matthew Mahoney
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This is the R-code as well as the underlying data needed to reproduce the results of the springer book chapter: "Ensembles of Ensembles: Combining the Predictions from Multiple Machine Learning Methods"

    For more information contact: dlieske@mta.ca

  16. NASA DC-8 1 Minute Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 1 Minute Data Merge [Dataset]. http://doi.org/10.26023/VM9C-1C16-H003
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 1, 2012 - Jun 30, 2012
    Area covered
    Description

    This dataset contains NASA DC-8 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. This dataset contains updated data provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg60-dc8_merge_YYYYMMdd_R5_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This dataset is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and dataset comments. For more information on updates to this dataset, please see the readme file.

  17. f

    Data from: HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE...

    • scielo.figshare.com
    tiff
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo (2023). HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE USING R SOFTWARE AND RSTUDIO [Dataset]. http://doi.org/10.6084/m9.figshare.19899537.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    ABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.

  18. DLR Falcon 1 Second Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). DLR Falcon 1 Second Data Merge [Dataset]. http://doi.org/10.26023/PYCX-YRVR-AB0W
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 29, 2012 - Jun 14, 2012
    Area covered
    Description

    This data set contains DLR Falcon 1 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 29 May 2012 through 14 June 2012. These merges were created using data in the NASA DC3 archive as of September 25, 2013. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg01-falcon_merge_YYYYMMdd_R1_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  19. Designing Types for R, Empirically (Dataset)

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip, pdf
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexi Turcotte; Aviral Goel; Filip Krikava; Jan Vitek; Alexi Turcotte; Aviral Goel; Filip Krikava; Jan Vitek (2024). Designing Types for R, Empirically (Dataset) [Dataset]. http://doi.org/10.5281/zenodo.4091818
    Explore at:
    pdf, application/gzipAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexi Turcotte; Aviral Goel; Filip Krikava; Jan Vitek; Alexi Turcotte; Aviral Goel; Filip Krikava; Jan Vitek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is intended to accompany the paper "Designing Types for R, Empirically" (@ OOPSLA'20, link to paper). This data was obtained by running the Typetracer (aka propagatr) dynamic analysis tool (link to tool) on the test, example, and vignette code of a corpus of >400 extensively used R packages.

    Specifically, this dataset contains:

    1. function type traces for >400 R packages (raw-traces.tar.gz);
    2. trace data processed into a more readable/usable form (processed-traces.tar.gz), which was used in obtaining results in the paper;
    3. inferred type declarations for the >400 R packages using various strategies to merge the processed traces (see type-declarations-* directories), and finally;
    4. contract assertion data from running the reverse dependencies of these packages and checking function usage against the declared types (contract-assertion-reverse-dependencies.tar.gz).

    A preprint of the paper is also included, which summarizes our findings.

    Fair warning Re: data size: the raw traces, once uncompressed, take up nearly 600GB. The already processed traces are in the 10s of GB, which should be more manageable for a consumer-grade computer.

  20. Updated Australian bathymetry: merged 250m bathyTopo

    • data.csiro.au
    • researchdata.edu.au
    Updated Sep 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julian O'Grady; Claire Trenham; Ron Hoeke (2021). Updated Australian bathymetry: merged 250m bathyTopo [Dataset]. http://doi.org/10.25919/cm17-xc81
    Explore at:
    Dataset updated
    Sep 15, 2021
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Julian O'Grady; Claire Trenham; Ron Hoeke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2009 - Aug 31, 2021
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    Accurate coastal wave and hydrodynamic modelling relies on quality bathymetric input. Many national scale modelling studies, hindcast and forecast products, have, or are currently using a 2009 digital elevation model (DEM), which does not include recently available bathymetric surveys and is now out of date. There are immediate needs for an updated national product, preceding the delivery of the AusSeabed program’s Global Multi-Resolution Topography for Australian coastal and ocean models. There are also challenges in stitching coarse resolution DEMs, which are often too shallow where they meet high-resolution information (e.g. LiDAR surveys) and require supervised/manual modifications (e.g. NSW, Perth, and Portland VIC bathymetries). This report updates the 2009 topography and bathymetry with a selection of nearshore surveys and demonstrates where the 2009 dataset and nearshore bathymetries do not matchup. Lineage: All of the datasets listed in Table 1 (see supporting files) were used in previous CSIRO internal projects or download from online data portals and processed using QGIS and R’s ‘raster’ package. The Perth LiDAR surveys were provided as points and gridded in R using raster::rasterFromXYZ(). The Macquarie Harbour contour lines were regridded in QGIS using the TIN interpolator. Each dataset was mapped with an accompanying Type Identifier (TID) following the conventions of the GEBCO dataset. The mapping went through several iterations, at each iteration the blending was checked for inconstancy, i.e., where the GA250m DEM was too shallow when it met the high-resolution LiDAR surveys. QGIS v3.16.4 was used to draw masks over inconstant blending and GA250 values falling within the mask and between two depths were assigned NA (no-data). LiDAR datasets were projected to +proj=longlat +datum=WGS84 +no_defs using raster::projectRaster(), resampled to the GA250 grid using raster::resample() and then merged with raster::merge(). Nearest neighbour resampling was performed for all datasets except for GEBCO ~500m product, which used the bilinear method. The order of the mapping overlay is sequential from TID = 1 being the base, through to 107, where 0 is the gap filled values.

    Permissions are required for all code and internal datasets (Contact Julian OGrady).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
Organization logo

MERGE Dataset

Explore at:
zipAvailable download formats
Dataset updated
Feb 7, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

  • MERGE Audio Complete: 3554
  • MERGE Audio Balanced: 3232
  • MERGE Lyrics Complete: 2568
  • MERGE Lyrics Balanced: 2400
  • MERGE Bimodal Complete: 2216
  • MERGE Bimodal Balanced: 2000

Additional Contents

Each dataset contains the following additional files:

  • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
  • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

Metadata

A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

  • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
  • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
  • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
  • Artist - First performing artist or band;
  • Title - Song title;
  • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
  • Duration - Song length in seconds;
  • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
  • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
  • Genres - User-generated genre tags extracted from the AllMusic platform;
  • Themes - User-generated theme tags extracted from the AllMusic platform;
  • Styles - User-generated style tags extracted from the AllMusic platform;
  • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
  • Sample - Availability of the sample in the AllMusic platform;
  • SampleURL - URL to the 30-second excerpt in AllMusic;
  • ActualYear - Year of song release.

Citation

If you use some part of the MERGE dataset in your research, please cite the following article:

Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

BibTeX:

@misc{louro2024mergebimodaldataset,
title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
year={2024},
eprint={2407.06060},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2407.06060},
}

Acknowledgements

This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

Search
Clear search
Close search
Google apps
Main menu