9 datasets found
  1. Code for merging National Neighborhood Data Archive ZCTA level datasets with...

    • linkagelibrary.icpsr.umich.edu
    Updated Oct 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Chenoweth; Anam Khan (2020). Code for merging National Neighborhood Data Archive ZCTA level datasets with the UDS Mapper ZIP code to ZCTA crosswalk [Dataset]. http://doi.org/10.3886/E124461V4
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset provided by
    University of Michigan. Institute for Social Research
    Authors
    Megan Chenoweth; Anam Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The sample SAS and Stata code provided here is intended for use with certain datasets in the National Neighborhood Data Archive (NaNDA). NaNDA (https://www.openicpsr.org/openicpsr/nanda) contains some datasets that measure neighborhood context at the ZIP Code Tabulation Area (ZCTA) level. They are intended for use with survey or other individual-level data containing ZIP codes. Because ZIP codes do not exactly match ZIP code tabulation areas, a crosswalk is required to use ZIP-code-level geocoded datasets with ZCTA-level datasets from NaNDA. A ZIP-code-to-ZCTA crosswalk was previously available on the UDS Mapper website, which is no longer active. An archived copy of the ZIP-code-to-ZCTA crosswalk file has been included here. Sample SAS and Stata code are provided for merging the UDS mapper crosswalk with NaNDA datasets.

  2. u

    DOHGS Merged Data Files containing all C-130 Observations

    • data.ucar.edu
    ascii
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisa Emmons (2025). DOHGS Merged Data Files containing all C-130 Observations [Dataset]. http://doi.org/10.26023/RXWQ-5ZA7-BN09
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Louisa Emmons
    Time period covered
    Jun 1, 2013 - Jul 15, 2013
    Area covered
    Description

    This dataset consists of DOHGS merged data from the 19 research flights with the C-130 over the Southeast U.S. between June 1 and July 15, 2013, as part of the Southeast Atmosphere Study (SAS). Merged data files have been created, combining all observations on the C-130 to a common time base for each flight. Version R5 (created Jan 21, 2015) of the merges includes all data available as of Jan 12. Start and stop times taken from the DOHGS file, midtime calculated from them. Averaging and missing value treatment as in 1-min merge.

  3. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  4. d

    Patient-reported outcomes via electronic health record portal vs. telephone:...

    • datadryad.org
    • search.dataone.org
    • +2more
    zip
    Updated Oct 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidi Munger Clary; Beverly Snively (2022). Patient-reported outcomes via electronic health record portal vs. telephone: process and retention data in a pilot trial of anxiety or depression symptoms in epilepsy [Dataset]. http://doi.org/10.5061/dryad.qz612jmk3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 23, 2022
    Dataset provided by
    Dryad
    Authors
    Heidi Munger Clary; Beverly Snively
    Time period covered
    Oct 5, 2022
    Description

    The dataset was collected via a combination of the following: 1. manual extraction of EHR-based data followed by entry into REDCap and then analysis and further processing in SAS 9.4; 2. Data pull of Epic EHR-based data from Clarity database using standard programming techniques, followed by processing in SAS 9.4 and merging with data from REDCap; 3. Collection of data directly from participants via telephone with entry into REDCap and further processing in SAS 9.4; 4. Collection of process measures from study team tracking records followed by entry into REDCap and further processing in SAS 9.4. One file in the dataset contains aggregate data generated following merging of Clarity data pull-origin dataset with a REDCap dataset and further manual processing. Recruitment for the randomized trial began at an epilepsy clinic visit, with EHR-embedded validated anxiety and depression instruments, followed by automated EHR-based research screening consent and eligibility assessment. Full...

  5. t

    Avi Abu, Roee Diamant (2024). Dataset: Underwater object classification...

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Avi Abu, Roee Diamant (2024). Dataset: Underwater object classification combining SAS and transferred optical-to-SAS Imagery. https://doi.org/10.57702/ycykmeja [Dataset]. https://service.tib.eu/ldmservice/dataset/underwater-object-classification-combining-sas-and-transferred-optical-to-sas-imagery
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    A novel features set that uniquely characterizes the object’s shape, and takes into account the object’s highlight-shadow geometrical relations.

  6. Data from: New York City Health and Nutrition Examination Survey (NYC...

    • icpsr.umich.edu
    ascii, delimited, sas +2
    Updated Nov 3, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2011). New York City Health and Nutrition Examination Survey (NYC HANES), 2004 [Dataset]. http://doi.org/10.3886/ICPSR31421.v1
    Explore at:
    ascii, sas, delimited, stata, spssAvailable download formats
    Dataset updated
    Nov 3, 2011
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/31421/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/31421/terms

    Time period covered
    Jun 2, 2004 - Dec 19, 2004
    Area covered
    New York, New York (state), United States
    Description

    The New York City Department of Health and Mental Hygiene, with support from the National Center for Health Statistics, conducted the New York City Health and Nutrition Examination Survey (NYC HANES) to improve disease surveillance and establish citywide estimates for several previously unmeasured health conditions from which reduction targets could be set and incorporated into health policy planning initiatives. NYC HANES also provides important new information about the prevalence and control of chronic disease precursors, such as undiagnosed hypertension, hypercholesterolemia, and impaired fasting glucose, which allow chronic disease programs to monitor more proximate health events and rapidly evaluate primary intervention efforts. Study findings are used by the public health community in New York City, as well as by researchers and clinicians, to better target resources to the health needs of the population. The NYC HANES data consist of the following six datasets: (1) Study Participant File (SPfile), (2) Computer-Assisted Personal Interview (CAPI), (3) Audio Computer-Assisted Self-Interview (ACASI), (4) Composite International Diagnostic Interview(CIDI), (5) Examination Component, and (6) Laboratory Component. The Study Participant File contains variables necessary for all analyses, therefore, when using the other datasets, they should be merged to this file. Variable P_ID is the unique identifier used to merge all datasets. Merging information from multiple NYC HANES datasets using SP_ID ensures that the appropriate information for each SP is linked correctly. (SAS datasets must be sorted by SP_ID prior to merging.) Please note that NYC HANES datasets may not have the same number of records for each component because some participants did not complete each component. Demographic variables include race/ethnicity, Hispanic origin, age, body weight, gender, education level, marital status, and country of birth.

  7. Decoding the thermal history of merging cluster Cygnus A (Part 2)

    • zenodo.org
    application/gzip
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anwesh Majumder; Anwesh Majumder; Michael Wise; Michael Wise; Aurora Simionescu; Aurora Simionescu; Martijn de Vries; Martijn de Vries (2024). Decoding the thermal history of merging cluster Cygnus A (Part 2) [Dataset]. http://doi.org/10.5281/zenodo.10462251
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anwesh Majumder; Anwesh Majumder; Michael Wise; Michael Wise; Aurora Simionescu; Aurora Simionescu; Martijn de Vries; Martijn de Vries
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data reproduction package for the paper "Decoding the thermal history of merging cluster Cygnus A" by Anwesh Majumder, M.W. Wise, A. Simionescu, M.N. de Vries (published in MNRAS). This is Part 2. Part 1 can be found here: 10.5281/zenodo.10461893

    Arxiv: https://arxiv.org/abs/2401.02912

    DOI: 10.1093/mnras/stae063

    Raw data: The Chandra and XMM data can be downloaded from https://cda.harvard.edu/chaser/ and http://nxsa.esac.esa.int/nxsa-web/#search . See the 'Data' section of the paper to know what to download. Any additional data source has been mentioned in the paper as footnotes.

    Software required:

    CIAO (https://cxc.cfa.harvard.edu/ciao/)

    XMM-SAS (https://www.cosmos.esa.int/web/xmm-newton/download-and-install-sas)

    Jupyter Notebook and Python-3.7 or higher (https://jupyter.org)

    MARX (https://space.mit.edu/cxc/marx/)

    SIMPUT (https://www.sternwarte.uni-erlangen.de/sixte/installation/)

    PyxSIM (https://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/)

    This upload contains simulation files and related notebooks. There are README files inside directories. Untar these files to get a description.

  8. g

    IP Australia - [Superseded] Intellectual Property Government Open Data 2019...

    • gimi9.com
    Updated Jul 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). IP Australia - [Superseded] Intellectual Property Government Open Data 2019 | gimi9.com [Dataset]. https://gimi9.com/dataset/au_intellectual-property-government-open-data-2019
    Explore at:
    Dataset updated
    Jul 20, 2018
    Area covered
    Australia
    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. # How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. # IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform # References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. * Patents * Trade Marks * Designs * Plant Breeder’s Rights # Updates ### Tables and columns Due to the changes in our systems, some tables have been affected. * We have added IPGOD 225 and IPGOD 325 to the dataset! * The IPGOD 206 table is not available this year. * Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. ### Data quality improvements Data quality has been improved across all tables. * Null values are simply empty rather than '31/12/9999'. * All date columns are now in ISO format 'yyyy-mm-dd'. * All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. * All tables are encoded in UTF-8. * All tables use the backslash \ as the escape character. * The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  9. [Superseded] Intellectual Property Government Open Data 2019

    • data.gov.au
    • researchdata.edu.au
    csv-geo-au, pdf
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IP Australia (2022). [Superseded] Intellectual Property Government Open Data 2019 [Dataset]. https://data.gov.au/data/dataset/activity/intellectual-property-government-open-data-2019
    Explore at:
    csv-geo-au(59281977), csv-geo-au(680030), csv-geo-au(39873883), csv-geo-au(37247273), csv-geo-au(25433945), csv-geo-au(92768371), pdf(702054), csv-geo-au(208449), csv-geo-au(166844), csv-geo-au(517357734), csv-geo-au(32100526), csv-geo-au(33981694), csv-geo-au(21315), csv-geo-au(6828919), csv-geo-au(86824299), csv-geo-au(359763), csv-geo-au(567412), csv-geo-au(153175), csv-geo-au(165051861), csv-geo-au(115749297), csv-geo-au(79743393), csv-geo-au(55504675), csv-geo-au(221026), csv-geo-au(50760305), csv-geo-au(2867571), csv-geo-au(212907250), csv-geo-au(4352457), csv-geo-au(4843670), csv-geo-au(1032589), csv-geo-au(1163830), csv-geo-au(278689420), csv-geo-au(28585330), csv-geo-au(130674), csv-geo-au(13968748), csv-geo-au(11926959), csv-geo-au(4802733), csv-geo-au(243729054), csv-geo-au(64511181), csv-geo-au(592774239), csv-geo-au(149948862)Available download formats
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    IP Australiahttp://ipaustralia.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    What is IPGOD?

    The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD.

    How do I use IPGOD?

    IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar.

    IP Data Platform

    IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform

    References

    The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset.

    Updates

    Tables and columns

    Due to the changes in our systems, some tables have been affected.

    • We have added IPGOD 225 and IPGOD 325 to the dataset!
    • The IPGOD 206 table is not available this year.
    • Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use.

    Data quality improvements

    Data quality has been improved across all tables.

    • Null values are simply empty rather than '31/12/9999'.
    • All date columns are now in ISO format 'yyyy-mm-dd'.
    • All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0.
    • All tables are encoded in UTF-8.
    • All tables use the backslash \ as the escape character.
    • The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.
  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Megan Chenoweth; Anam Khan (2020). Code for merging National Neighborhood Data Archive ZCTA level datasets with the UDS Mapper ZIP code to ZCTA crosswalk [Dataset]. http://doi.org/10.3886/E124461V4
Organization logo

Code for merging National Neighborhood Data Archive ZCTA level datasets with the UDS Mapper ZIP code to ZCTA crosswalk

Explore at:
Dataset updated
Oct 15, 2020
Dataset provided by
University of Michigan. Institute for Social Research
Authors
Megan Chenoweth; Anam Khan
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The sample SAS and Stata code provided here is intended for use with certain datasets in the National Neighborhood Data Archive (NaNDA). NaNDA (https://www.openicpsr.org/openicpsr/nanda) contains some datasets that measure neighborhood context at the ZIP Code Tabulation Area (ZCTA) level. They are intended for use with survey or other individual-level data containing ZIP codes. Because ZIP codes do not exactly match ZIP code tabulation areas, a crosswalk is required to use ZIP-code-level geocoded datasets with ZCTA-level datasets from NaNDA. A ZIP-code-to-ZCTA crosswalk was previously available on the UDS Mapper website, which is no longer active. An archived copy of the ZIP-code-to-ZCTA crosswalk file has been included here. Sample SAS and Stata code are provided for merging the UDS mapper crosswalk with NaNDA datasets.

Search
Clear search
Close search
Google apps
Main menu