15 datasets found
  1. National Micronutrient Survey 2011 - Kenya

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya Medical Research Institute (KEMRI) (2019). National Micronutrient Survey 2011 - Kenya [Dataset]. https://catalog.ihsn.org/index.php/catalog/6695/study-description
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Kenya National Bureau of Statistics
    Kenya Medical Research Institute
    Division of Nutrition, Ministry of Public Health and Sanitation (MOPHS)
    Time period covered
    2011
    Area covered
    Kenya
    Description

    Abstract

    The Kenya National Micronutrients Survey (NMS) 2011 was the first NMS to be carried by the Kenya National Bureau of Statistics. The purpose of this survey is to ensure the quality of HIV testing and the interpretation of results, both in the laboratory and in the community. Fort HIV testing, it is extremely important that "the correct results go to the right client". The identity of clients and the labelling of test devices should therefore be preserved properly.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Universe

    The survey covered household members (usual residents), womens questinnaire( aged 15-49 years) resident in the household, children( aged 0-6-49months), School age children (aged 5-14 years) resident in the household and Men questionnire (aged 15-54 year).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size estimation The sample size required for each stratum was based on the estimated prevalence for each nutritional indicator, the desired precision for each indicator, an assumed design effect of 2.0, and a non-response of 10% (including refusals) at the household level and 10% at the individual levels for children 6-59 months of age and non-pregnant women. An additional non-response rate of 10% (for a total 30% non-response rate) was assumed for the men and SAC 5-14 years old.

    Sampling design In 2010, Kenya ratified a new constitution which established 47 county governments. This change has highlighted the need for national surveys to collect information beyond the provincial level, and move towards collection of county-level estimates. However, obtaining county-level estimates with adequate precision were not considered feasible in KNMS due to limitations in sample size and resources. Therefore KNMS consisted of the three domains as defined earlier. The sampling frame for the 2010 KMNS was based on the National Sample Survey and Evaluation Programme (NASSEP IV) master sampling frame maintained by the Kenya National Bureau of Statistics (KNBS). Administratively, Kenya is divided into 8 provinces. In turn, each province is The Kenya National Micronutrient Survey 2011 subdivided into districts, each district into divisions, each division into locations and each location into sub-locations. In addition to these administrative units, during the last 1999 population census, each sub-location was subdivided into census Enumeration Areas (EAs) i.e. small geographic units with clearly defined boundaries. As defined in the 1999 census, Kenya has eight provinces, 69 districts, and approximately 62,000 EAs. The list of EAs is grouped by administrative units and includes information on the number of households and population. This information was used in 2002 to design a master sample with about 1,800 selected EAs. The cartographic material for each EA in the master sample was updated in the field. The resulting master sampling frame was NASSEP IV which is still currently used by KNBS. The NASSEP IV master frame is a two-stage stratified cluster sample format. The first stage is a selection of Primary Sampling Units (PSUs), which are the EAs using probability proportional to measure of size (PPMOS) method. The second stage involves the selection of households for various surveys. EAs are selected with a basis of one Measure of Size (MOS) defined as the ultimate cluster with an average of 100 households and constitute one (or more) EAs. Although consideration was given to development of a new master frame for KNMS, time and other resource constraints dictated that the sample frame of this survey was NASSEP IV. The KNMS sample was selected using a stratified two-stage cluster design consisting of 296 clusters, 123 in the urban and 173 in the rural areas. From each cluster a total of 10 households were selected using systematic simple random sampling. For the KNMS survey, an urban area was defined as "an area with an increased density of human-created structures in comparison to the areas surrounding it and has a population of 2,000 people and above". Using this definition, urban areas included Cities, Municipalities, Town Councils, Urban Councils and all District Headquarters. A rural area was defined as an isolated large area of an open country in reference to open fields with peoples whose main economic activity was farming. Every attempt was made to conduct interviews in the 10 selected households, and one additional visit was made to ascertain this compliance in cases of absence of household members to minimize potential bias. Non responding households were not replaced.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey covers household members questionnaire (usual residents), women questinnaire ( aged 15-49 years), preschool children questionnarie( aged 6-59 months), school age children questionnaire (aged 5-14 years) and men questionnire (aged 15-54 year). The hosehold member questionnaire includes: Identification, Interviewer Visits, Socio demographic characteristics, Socio-economic characteristics, Food fortification, Wheat flour fortification, Salt fortification, Sugar fortification, Oils/fats fortification, Interviewer's observations. The women questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, WRA Health questions. The school age children questionnaire includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Dietary Diversity Score Questions, Infant Feeding Practice Questions children 6-35 months, Interviewer Observations, The preschool children questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Interviewer Observations. The men questionnarie includes: Identification, Interviewer Visits, Health questions, Interviewer Observations.

    Cleaning operations

    The field questionnaires baring household characteristics, individual population characteristics, and anthropometrics measurements were double entered into a computer database designed using MS-Access application. Regular file back-up was done using flash disks and external hard disk to avoid any loss or tampering. Data comparison was done using Epi-info version 7.0. Data cleaning and validation was performed to achieve clean datasets. The datasets were exported into a Statistical Package format (IBM® SPSS® Statistics version 20.0). The laboratory results were entered in excel format and later exported into a Statistical Package format (IBM® SPSS®Statistics version 20.0). Data merging exercise was systematically conducted using the four datasets i.e. household characteristics, individual population characteristics, anthropometrics measurements, and laboratory results. Each of the five populations namely; Pre-school children (PSC), School aged children (SAC), Pregnant women (PW), Non-pregnant women (NPW), and Men were separately merged. Data merging was conducted as follows: STEP1: The 'laboratory results' file was first merged to the 'anthropometrics' file using 'LABLE NUMBER' as the unique identifier. STEP2: The merged 'laboratory + anthropometrics' file was merged to individual population characteristics file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. STEP3: The merged 'laboratory + anthropometrics + individual population characteristics' file was merged to the 'household characteristics' file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. Five master-files were backed-up for safe keeping and a copy was shared with the statisticians for analysis. All the questionnaires and laboratory forms were filed and stored in lockable drawers for confidentiality.

    The validated data was exported to SPSS Version 20 for analysis.

  2. H

    Record of American Democracy, All Key Data Files

    • dataverse.harvard.edu
    Updated Oct 2, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King, Gary; Palmquist, Bradley; Adams, Greg; Altman, Micah; Benoit, Kenneth; Gay, Claudine; Lewis, Jeffrey B.; Mayer, Russ; and Reinhardt, Eric (2013). Record of American Democracy, All Key Data Files [Dataset]. http://doi.org/10.7910/DVN/JN2MOV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 2, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    King, Gary; Palmquist, Bradley; Adams, Greg; Altman, Micah; Benoit, Kenneth; Gay, Claudine; Lewis, Jeffrey B.; Mayer, Russ; and Reinhardt, Eric
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/JN2MOVhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/JN2MOV

    Area covered
    United States
    Description

    The Record of American Democracy (ROAD) data provide election returns, socioeconomic summaries, and demographic details about the American public at unusually low levels of geographic aggregation. The NSF-supported ROAD project spans every state in the country from 1984 through 1990 (including some off-year elections). These data enable research on topics such as electoral behavior, the political characteristics of local community context, electoral geography, the role of minority groups in elections and legislative redistricting, split ticket voting and divided government, and elections under federalism. One set of files (Part 4, PRECINCT directory, consisting of 205 SPSS portable files) includes every election at and above state House, along with party registration and other variables, in each state for the roughly 170,000 precincts nationwide (about 60 times the number of counties). Another set of files (Part 5, MCDGRP directo ry, 52 SPSS portable files) has added to these roughly 30-40 political variables an additional 3,725 variables merged from the 1990 United States Census for 47,327 aggregate units called MCD Groups. The MCD Group is a construct for purposes of this data collection. It is based on a merging of the electoral precincts and Census Minor Civil Divisions (MCDs). An MCD is about the size of a city or town. An MCD Group is smaller than or equal to a county and (except in California) is greater than or equal to the size of an MCD. The MCD Group units completely tile the United States landmass. The program used to create the MCD group level is also included as part of this collection, as well as the input and output files. This collection also includes geographic boundary files so users can easily draw maps with these data.This particular set of files contains all key data files that comprise the study. Documentation and frequently asked questions are available online at the ROAD Website. A downloadable PDF codebook is also available in the files section of this study.

  3. H

    Health and Retirement Study (HRS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  4. f

    Data set in SPSS format.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lin, Yen-Kuang; Chen, Chen-Yueh; Chen, Wen-Cheng; Lu, Shu-Cheng; Yu, Yung-Chang (2025). Data set in SPSS format. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002061399
    Explore at:
    Dataset updated
    Jun 24, 2025
    Authors
    Lin, Yen-Kuang; Chen, Chen-Yueh; Chen, Wen-Cheng; Lu, Shu-Cheng; Yu, Yung-Chang
    Description

    This study investigates the impact of technology-assisted sports training on the physiological and psychological performance of recreational exercisers (non-athletes), with particular attention to the moderating role of sport involvement (SI). A quasi-experimental design was employed, with 48 participants randomly assigned to either an experimental group (technology-assisted training) or a control group (traditional coaching) for an eight-week training program. Performance measures included exercise self-efficacy (ESE) and squat speed (SS). Data were analyzed using ANCOVA and linear mixed models. The results showed that technology-assisted training significantly improved SS (p = 0.026), but had no significant effect on ESE (p = 0.905). Furthermore, SI moderated the relationship between training method and ESE: participants with low SI demonstrated significant improvements in ESE under traditional coaching (p = 0.006), whereas those with high SI showed no significant differences between training methods. These findings suggest that while sports technology can enhance physical performance, it does not necessarily improve exercise self-efficacy. For individuals with low sport involvement, traditional coaching remains essential, highlighting the importance of combining technology with interpersonal interaction. Future training strategies should be customized according to participants’ levels of sport involvement to optimize both performance and psychological motivation, thereby promoting broader health engagement and exercise participation.

  5. w

    Multiple Indicator Cluster Survey 2006 - Iraq

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Organization for Statistics and Information Technology (2018). Multiple Indicator Cluster Survey 2006 - Iraq [Dataset]. https://microdata.worldbank.org/index.php/catalog/16
    Explore at:
    Dataset updated
    Apr 9, 2018
    Dataset provided by
    Kurdistan Region Statistics Office
    Suleimaniya Statistical Directorate
    Central Organization for Statistics and Information Technology
    Ministry of Health
    Time period covered
    2006
    Area covered
    Iraq
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments, such as the United Nations General Assembly Special Session (UNGASS) on HIV/AIDS and the Abuja targets for malaria.

    The 2006 Iraq Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Iraq; - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals and the goals of A World Fit For Children (WFFC) as a basis for future action; - To contribute to the improvement of data and monitoring systems in Iraq and to strengthen technical expertise in the design, implementation and analysis of such systems.

    Survey Content MICS questionnaires are designed in a modular fashion that was customized to the needs of the country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.

    Survey Implementation The survey was implemented by the Central Organization for Statistics and Information Technology (COSIT), the Kurdistan Region Statistics Office (KRSO) and Suleimaniya Statistical Directorate (SSD), in partnership with the Ministry of Health (MOH). The survey also received support and assistance of UNICEF and other partners. Technical assistance and training for the surveys was provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Iraq.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    De jure household members (defined as memers of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household. The survey also includes a full birth history listing all chuldren ever born to ever-married women age 15-49 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Iraq Multiple Indicator Cluster Survey was designed to provide estimates on a large number of indicators on the situation of children and women at the national level; for areas of residence of Iraq represented by rural and urban (metropolitan and other urban) areas; for the18 governorates of Iraq; and also for metropolitan, other urban, and rural areas for each governorate. Thus, in total, the sample consists of 56 different sampling domains, that includes 3 sampling domains in each of the 17 governorates outside the capital city Baghdad (namely, a metropolitan area domain representing the governorate city centre, an other urban area domain representing the urban area outside the governorate city centre, and a rural area domain) and 5 sampling domains in Baghdad (namely, 3 metropolitan areas representing Sadir City, Resafa side, and Kurkh side, an other urban area sampling domain representing the urban area outside the three Baghdad governorate city centres, and a sampling domain comprising the rural area of Baghdad).

    The sample was selected in two stages. Within each of the 56 sampling domains, 54 PSUs were selected with linear systematic probability proportional to size (PPS).

    \After mapping and listing of households were carried out within the selected PSU or segment of the PSU, linear systematic samples of six households were drawn. Cluster sizes of 6 households were selected to accommodate the current security conditions in the country to allow the surveys team to complete a full cluster in a minimal time. The total sample size for the survey is 18144 households. The sample is not self-weighting. For reporting national level results, sample weights are used.

    The sampling procedures are more fully described in the sampling appendix of the final report and can also be found in the list of technical documents within this archive.

    (Extracted from the final report: Central Organisation for Statistics & Information Technology and Kurdistan Statistics Office. 2007. Iraq Multiple Indicator Cluster Survey 2006, Final Report. Iraq.)

    Sampling deviation

    No major deviations from the original sample design were made. One cluster of the 3024 clusters selected was not completed all othe clusters were accessed.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires were based on the third round of the Multiple Indicator Cluster survey model questionnaires. From the MICS-3 model English version, the questionnaires were revised and customized to suit local conditions and translated into Arabic and Kurdish languages. The Arabic language version of the questionnaire was pre-tested during January 2006 while the Kurdish language version was pre-tested during March 2006. Based on the results of the pre-test, modifications were made to the wording and translation of the questionnaires.

    In addition to the administration of questionnaires, fieldwork teams tested the salt used for cooking in the households for iodine content, and measured the weights and heights of children age under-5 years.

    Cleaning operations

    Data were processed in clusters, with each cluster being processed as a complete unit through each stage of data processing. Each cluster goes through the following steps: 1) Questionnaire reception 2) Office editing and coding 3) Data entry 4) Structure and completeness checking 5) Verification entry 6) Comparison of verification data 7) Back up of raw data 8) Secondary editing 9) Edited data back up

    After all clusters are processed, all data is concatenated together and then the following steps are completed for all data files: 10) Export to SPSS in 5 files (hh - household, hl - household members, wm - women age 15-49, ch - children under 5 bh - women age 15-49) 11) Recoding of variables needed for analysis 12) Adding of sample weights 13) Calculation of wealth quintiles and merging into data 14) Structural checking of SPSS files 15) Data quality tabulations 16) Production of analysis tabulations

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS Manual (http://www.childinfo.org/mics/mics3/manual.php)

    Data entry was conducted by 12 data entry operators in tow shifts, supervised by 2 data entry supervisors, using a total of 7 computers (6 data entry computers plus one supervisors computer). All data entry was conducted at the GenCenStat head office using manual data entry. For data entry, CSPro version 2.6.007 was used with a highly structured data entry program, using system controlled approach, that controlled entry of each variable. All range checks and skips were controlled by the program and operators could not override these. A limited set of consistency checks were also included inthe data entry program. In addition, the calculation of anthropometric Z-scores was also included in the data entry programs for use during analysis. Open-ended responses ("Other" answers) were not entered or coded, except in rare circumstances where the response matched an existing code in the questionnaire.

    Structure and completeness checking ensured that all questionnaires for the cluster had been entered, were structurally sound, and that women's and children's questionnaires existed for each eligible woman and child.

    100% verification of all variables was performed using independent verification, i.e. double entry of data, with separate comparison of data followed by modification of one or both datasets to correct keying errors by original operators who first keyed the files.

    After completion of all processing in CSPro, all individual cluster files were backed up before concatenating data together using the CSPro file concatenate utility.

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS Manual (http://www.childinfo.org/mics/mics3/manual.php)

    Response rate

    Of the 18144 households selected for the sample, 18123 were found to be occupied. Of these, 17873 were successfully interviewed for a household response rate of 98.6 percent. In the interviewed households, 27564 women (age 15-49 years) were identified. Of these, 27186 were successfully interviewed, yielding a

  6. g

    A Multi-Site Assessment of Police Consolidation: California, Michigan,...

    • gimi9.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). A Multi-Site Assessment of Police Consolidation: California, Michigan, Minnesota, Pennsylvania, 2014-2015 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_5329043bb67c41a8838304b0753950356568ec28/
    Explore at:
    Dataset updated
    Sep 2, 2022
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Minnesota, California Township, Pennsylvania, Michigan
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. The study gathered information from police officers and residents of four different community areas that had undergone some form of police consolidation or contracting. The communities were the city of Pontiac in Michigan; the cities of Chisago and Lindstrom in Minnesota; York and Windsor Townships and the boroughs of Felton, Jacobus, Yoe, Red Lion, and Windsor in Pennsylvania; and the city of Compton in California. Surveys were administered to gauge the implementation and effectiveness of three models of police consolidation: merger of agencies, regionalization under which two or more agencies join to provide services in a broader area, and contracting by municipalities with other organizations for police services. The collection includes 5 SPSS files: ComptonFinal_Masked-by-ICPSR.sav (176 cases / 99 variables) MinnesotaFinal_Masked-by-ICPSR.sav (228 cases / 99 variables) PontiacFinal_Masked-by-ICPSR.sav (230 cases / 99 variables) YorkFinal_Masked-by-ICPSR.sav (219 cases / 99 variables) OfficerWebFINALrecodesaug2015revised_Masked-by-ICPSR.sav (139 cases / 88 variables)

  7. m

    Hanegraaf, Paton, Verdejo-Garcia, Hohwy Social Processing in BPD Dataset.sav...

    • bridges.monash.edu
    bin
    Updated Aug 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauren Hanegraaf; Antonio Verdejo-Garcia; Jakob Hohwy; Bryan Paton (2022). Hanegraaf, Paton, Verdejo-Garcia, Hohwy Social Processing in BPD Dataset.sav [Dataset]. http://doi.org/10.26180/20437509.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 5, 2022
    Dataset provided by
    Monash University
    Authors
    Lauren Hanegraaf; Antonio Verdejo-Garcia; Jakob Hohwy; Bryan Paton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SPSS dataset used for statistical analysis in manuscript: "Combining Trait and Neurocognitive Frameworks to Parse Heterogeneity in Borderline Personality Disorder" -- see methods for a description of variables or contact authors for more information

  8. i

    Multiple Indicator Cluster Survey 2006 - Lebanon

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics and Natural Resources (2019). Multiple Indicator Cluster Survey 2006 - Lebanon [Dataset]. https://catalog.ihsn.org/catalog/904
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Bureau of Statistics and Natural Resources
    Time period covered
    2005 - 2006
    Area covered
    Lebanon
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments, such as the United Nations General Assembly Special Session (UNGASS) on HIV/AIDS and the Abuja targets for malaria.

    Survey Objectives The 2006 Palestinian Refugee Camps, Lebanon Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Generic - To furnish data needed for monitoring progress toward goals established in the Millennium Declaration, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To contribute to the improvement of data and monitoring systems in Generic and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content

    MICS questionnaires are designed in a modular fashion that can be easily customized to the needs of a country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.

    Survey Implementation

    The surveys are typically carried out by government organizations, with the support and assistance of UNICEF and other partners. Technical assistance and training for the surveys is provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Survey results

    Results from the surveys, including national reports, standard sets of tabulations and micro level datasets will all be made widely available after completion of the surveys. Results from the surveys will also be made available in DevInfo format. DevInfo v5.0 is a powerful database system which has been adapted from UNICEF's ChildInfo technology to specifically monitor progress towards the Millennium Development Goals. MICS Results will also be available through UNICEF's web site dedicated to monitoring the situation of children and women at www.childinfo.org. Results of the prior round of MICS can already be found at this site.

    Geographic coverage

    The survey is representative and covers the whole of Palestinian refugee camps and gatherings in Lebanon.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    De jure household members (defined as memers of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Multiple Indicator Cluster Survey (MICS) in Palestinian Refugee Camps and Gatherings in Lebanon was designed to provide estimates on a large number of indicators on the situation of children and women at the geographical area and camp/gathering level, for urban and rural areas, and for 12 camps and 12 gatherings in 5 geographical areas. With this design we could monitor a large number of women and children indicators at the geographical area and camp level for urban and rural areas.

    The sample population (based on the Palestinian Refugee Camps and Gatherings in Lebanon Census of 1999) was divided into equal clusters each containing 20 households (totaling 1300 clusters). Sample clusters (310 clusters, i.e. 6200 households) were drawn with uniformity, random start and a sampling fraction of 0.25.

    Sampling deviation

    No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three sets of questionnaires were used in the survey: 1) a household questionnaire was used to collect information on all household members, the household, and the dwelling; 2) a women’s questionnaire administered in each household to all women aged 15-49 years; 3) an under-5 questionnaire, administered to mothers or caretakers of all children under 5 living in the household.

    The questionnaires included the following modules: Household Questionnaire, Household Listing, Education, Water and Sanitation Facilities, Household Background Characteristics, Child Labour, and Salt Iodization.

    Questionnaire for Individual Women: Child Mortality, Tetanus Toxoid, Maternal and Newborn Health, Contraception, and - HIV/AIDS.

    Questionnaire for Children Under Five: Birth Registration and Early Learning, Vitamin A, Breastfeeding, Care of Illness, Immunization, and Anthropometry.

    The questionnaires are based on the MICS3 model questionnaire. Changes in format were made to the UNICEF MICS3 model Arabic version questionnaires that were pre-tested during March 2006.

    Cleaning operations

    Data were processed in clusters, with each cluster being processed as a complete unit through each stage of data processing. Each cluster goes through the following steps: 1) Questionnaire reception 2) Office editing and coding 3) Data entry 4) Structure and completeness checking 5) Verification entry 6) Comparison of verification data 7) Back up of raw data 8) Secondary editing 9) Edited data back up After all clusters are processed, all data is concatenated together and then the following steps are completed for all data files: 10) Export to SPSS in 4 files (hh - household, hl - household members, wm - women, ch - children under 5) 11) Recoding of variables needed for analysis 12) Adding of sample weights 13) Calculation of wealth quintiles and merging into data 14) Structural checking of SPSS files 15) Data quality tabulations 16) Production of analysis tabulations

    Details of each of these steps can be found in the data processing documentation, data editing guidelines, data processing programs in CSPro and SPSS, and tabulation guidelines.

    Data entry was conducted by 12 data entry operators in tow shifts, supervised by 2 data entry supervisors, using a total of 7 computers (6 data entry computers plus one supervisors computer). All data entry was conducted at the GenCenStat head office using manual data entry. For data entry, CSPro version 2.6.007 was used with a highly structured data entry program, using system controlled approach, that controlled entry of each variable. All range checks and skips were controlled by the program and operators could not override these. A limited set of consistency checks were also included inthe data entry program. In addition, the calculation of anthropometric Z-scores was also included in the data entry programs for use during analysis. Open-ended responses ("Other" answers) were not entered or coded, except in rare circumstances where the response matched an existing code in the questionnaire.

    Structure and completeness checking ensured that all questionnaires for the cluster had been entered, were structurally sound, and that women's and children's questionnaires existed for each eligible woman and child.

    100% verification of all variables was performed using independent verification, i.e. double entry of data, with separate comparison of data followed by modification of one or both datasets to correct keying errors by original operators who first keyed the files.

    After completion of all processing in CSPro, all individual cluster files were backed up before concatenating data together using the CSPro file concatenate utility.

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS Manual (http://www.childinfo.org/mics/mics3/manual.php)

    Response rate

    The response rate of households, mothers and children was remarkably high. Of the 6200 households selected for the sample, only 33 households could not be interviewed thus making the household response rate 99.5 percent.

    In the interviewed households, 4001 ever married women (age 15-49) were identified. Of these, 3955 were successfully interviewed, yielding a response rate of 98.9 percent. In addition, 2431 children under age five were listed in the household questionnaire. Questionnaires were completed for 2381 of these children, which corresponds to a response rate of 97.9 percent.

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling

  9. 2

    GHS

    • datacatalogue.ukdataservice.ac.uk
    Updated Nov 27, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics, Social and Vital Statistics Division (2007). GHS [Dataset]. http://doi.org/10.5255/UKDA-SN-5640-1
    Explore at:
    Dataset updated
    Nov 27, 2007
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics, Social and Vital Statistics Division
    Area covered
    United Kingdom
    Description

    The General Household Survey (GHS), ran from 1971-2011 (the UKDS holds data from 1972-2011). It was a continuous annual national survey of people living in private households, conducted by the Office for National Statistics (ONS). The main aim of the survey was to collect data on a range of core topics, covering household, family and individual information. This information was used by government departments and other organisations for planning, policy and monitoring purposes, and to present a picture of households, families and people in Great Britain. In 2008, the GHS became a module of the Integrated Household Survey (IHS). In recognition, the survey was renamed the General Lifestyle Survey (GLF). The GLF closed in January 2012. The 2011 GLF is therefore the last in the series. A limited number of questions previously run on the GLF were subsequently included in the Opinions and Lifestyle Survey (OPN).

    Secure Access GHS/GLF
    The UKDS holds standard access End User Licence (EUL) data for 1972-2006. A Secure Access version is available, covering the years 2000-2011 - see SN 6716 General Lifestyle Survey, 2000-2011: Secure Access.

    History
    The GHS was conducted annually until 2011, except for breaks in 1997-1998 when the survey was reviewed, and 1999-2000 when the survey was redeveloped. Further information may be found in the ONS document An overview of 40 years of data (General Lifestyle Survey Overview - a report on the 2011 General Lifestyle Survey) (PDF). Details of changes each year may be found in the individual study documentation.

    EU-SILC
    In 2005, the European Union (EU) made a legal obligation (EU-SILC) for member states to collect additional statistics on income and living conditions. In addition, the EU-SILC data cover poverty and social exclusion. These statistics are used to help plan and monitor European social policy by comparing poverty indicators and changes over time across the EU. The EU-SILC requirement was integrated into the GHS/GLF in 2005. After the closure of the GLF, EU-SILC was collected via the Family Resources Survey (FRS) until the UK left the EU in 2020.

    Reformatted GHS data 1973-1982 - Surrey SPSS Files
    SPSS files were created by the University of Surrey for all GHS years from 1973 to 1982 inclusive. The early files were restructured and the case changed from the household to the individual with all of the household information duplicated for each individual. The Surrey SPSS files contain all the original variables as well as some extra derived variables (a few variables were omitted from the data files for 1973-76). In 1973 only, the section on leisure was not included in the Surrey SPSS files. This has subsequently been made available, however, and is now held in a separate study, General Household Survey, 1973: Leisure Questions (SN 3982). Records for the original GHS 1973-1982 ASCII files have been removed from the UK Data Archive catalogue, but the data are still preserved and available upon request.

    For the second edition (November 2007), the depositor supplied revised household and individual files, with some changes to variables included. See study READ file (link below) for full details.

    January 2010 update
    New HSERIAL, PID and FSERIAL values have been created using lookup tables of sequential numbers provided by ONS. The newly created variables HSERIAL, PID and FSERIAL have replaced the old variables. This update was made because previously cases for the first quarter did not have the person identifier variable PID, and it was not possible to uniquely identify individuals by combining information on HSERIAL and PERSNO, as duplicates occurred as a result of the changes in survey design (please see 'Further changes to the GHS methodology from 2005' above).

  10. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • openicpsr.org
    Updated May 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Hate Crime Data 1991-2019 [Dataset]. http://doi.org/10.3886/E103500V7
    Explore at:
    Dataset updated
    May 18, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1991 - 2019
    Area covered
    United States
    Description

    !!!WARNING~~~This dataset has a large number of flaws and is unable to properly answer many questions that people generally use it to answer, such as whether national hate crimes are changing (or at least they use the data so improperly that they get the wrong answer). A large number of people using this data (academics, advocates, reporting, US Congress) do so inappropriately and get the wrong answer to their questions as a result. Indeed, many published papers using this data should be retracted. Before using this data I highly recommend that you thoroughly read my book on UCR data, particularly the chapter on hate crimes (https://ucrbook.com/hate-crimes.html) as well as the FBI's own manual on this data. The questions you could potentially answer well are relatively narrow and generally exclude any causal relationships. ~~~WARNING!!!Version 8 release notes:Adds 2019 dataVersion 7 release notes:Changes release notes description, does not change data.Version 6 release notes:Adds 2018 dataVersion 5 release notes:Adds data in the following formats: SPSS, SAS, and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Adds data for 1991.Fixes bug where bias motivation "anti-lesbian, gay, bisexual, or transgender, mixed group (lgbt)" was labeled "anti-homosexual (gay and lesbian)" prior to 2013 causing there to be two columns and zero values for years with the wrong label.All data is now directly from the FBI, not NACJD. The data initially comes as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. Version 4 release notes: Adds data for 2017.Adds rows that submitted a zero-report (i.e. that agency reported no hate crimes in the year). This is for all years 1992-2017. Made changes to categorical variables (e.g. bias motivation columns) to make categories consistent over time. Different years had slightly different names (e.g. 'anti-am indian' and 'anti-american indian') which I made consistent. Made the 'population' column which is the total population in that agency. Version 3 release notes: Adds data for 2016.Order rows by year (descending) and ORI.Version 2 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Hate Crime data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains information about hate crimes reported in the United States. Please note that the files are quite large and may take some time to open.Each row indicates a hate crime incident for an agency in a given year. I have made a unique ID column ("unique_id") by combining the year, agency ORI9 (the 9 character Originating Identifier code), and incident number columns together. Each column is a variable related to that incident or to the reporting agency. Some of the important columns are the incident date, what crime occurred (up to 10 crimes), the number of victims for each of these crimes, the bias motivation for each of these crimes, and the location of each crime. It also includes the total number of victims, total number of offenders, and race of offenders (as a group). Finally, it has a number of columns indicating if the victim for each offense was a certain type of victim or not (e.g. individual victim, business victim religious victim, etc.). The only changes I made to the data are the following. Minor changes to column names to make all column names 32 characters or fewer (so it can be saved in a Stata format), made all character values lower case, reordered columns. I also generated incident month, weekday, and month-day variables from the incident date variable included in the original data.

  11. i

    Multiple Indicator Cluster Survey 2005 - Jamaica

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Institute (2019). Multiple Indicator Cluster Survey 2005 - Jamaica [Dataset]. https://catalog.ihsn.org/index.php/catalog/828
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistical Institute
    Time period covered
    2005
    Area covered
    Jamaica
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments.

    Survey Objectives The 2005 Jamaica Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Jamaica. - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To contribute to the improvement of data and monitoring systems in Jamaica and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content MICS questionnaires are designed in a modular fashion that can be easily customized to the needs of a country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.

    Survey Implementation The survey was carried out by STATIN with the support and assistance of UNICEF and other partners. Technical assistance and training for the surveys is provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Jamaica.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    De jure household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Jamaica Multiple Indicator Cluster Survey (MICS) was designed to provide estimates on a large number of indicators on the situation of children and women at the national level, as well as urban and rural areas. Parishes were identified as the main sampling domains and were divided into sampling regions of equal sizes. The sample was selected in two stages. Within each sampling region, two census enumeration areas/Primary Sampling Units (PSUs) were selected with probability proportional to size. Using the household listing from the selected PSUs a systematic sample of 6,276 dwellings was drawn.

    The sampling procedures are more fully described in the the sampling appendix (appendix A) of the final report.

    Sampling deviation

    Five of the selected enumeration areas were not visited because they were inaccessible due to flooding during the fieldwork period. Sample weights were used in the calculation of national level results.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for the Jamaica MICS were structured questionnaires based on the MICS3 Model Questionnaire with some modifications and additions. A household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. The household questionnaire includes support to orphaned and vulnerable children, education, child labour, water and sanitation, and salt iodization, with optional modules for child discipline, child disability and security of tenure and durability of housing. In addition to a household questionnaire, questionnaires were administered in each household for women age 15-49 and children under age five. For children, the questionnaire was administered to the mother or caretaker of the child. The women's questionnaire include women's characteristics, child mortality, tetanus toxoid, maternal and newborn health, marriage, contraception, and HIV/AIDS knowledge, with optional modules for unmet need, domestic violence, and sexual behavior. The children's questionnaire includes children's characteristics, birth registration and early learning, vitamin A, breastfeeding, care of illness, malaria, immunization, and an optional module for child development. All questionnaires and modules are provided as external resources.

    Cleaning operations

    Data were processed in clusters, with each cluster being processed as a complete unit through each stage of data processing. Each cluster goes through the following steps: 1) Questionnaire reception 2) Office editing and coding 3) Data entry 4) Structure and completeness checking 5) Verification entry 6) Comparison of verification data 7) Back up of raw data 8) Secondary editing 9) Edited data back up

    After all clusters are processed, all data is concatenated together and then the following steps are completed for all data files: 10) Export to SPSS in 4 files (hh - household, hl - household members, wm - women, ch - children under 5) 11) Recoding of variables needed for analysis 12) Adding of sample weights 13) Calculation of wealth quintiles and merging into data 14) Structural checking of SPSS files 15) Data quality tabulations 16) Production of analysis tabulations

    Details of each of these steps can be found in the data processing documentation, data editing guidelines, data processing programs in CSPro and SPSS, and tabulation guidelines.

    Data entry was conducted by 12 data entry operators in tow shifts, supervised by 2 data entry supervisors, using a total of 7 computers (6 data entry computers plus one supervisors computer). All data entry was conducted at the GenCenStat head office using manual data entry. For data entry, CSPro version 2.6.007 was used with a highly structured data entry program, using system controlled approach, that controlled entry of each variable. All range checks and skips were controlled by the program and operators could not override these. A limited set of consistency checks were also included inthe data entry program. In addition, the calculation of anthropometric Z-scores was also included in the data entry programs for use during analysis. Open-ended responses ("Other" answers) were not entered or coded, except in rare circumstances where the response matched an existing code in the questionnaire.

    Structure and completeness checking ensured that all questionnaires for the cluster had been entered, were structurally sound, and that women's and children's questionnaires existed for each eligible woman and child.

    100% verification of all variables was performed using independent verification, i.e. double entry of data, with separate comparison of data followed by modification of one or both datasets to correct keying errors by original operators who first keyed the files.

    After completion of all processing in CSPro, all individual cluster files were backed up before concatenating data together using the CSPro file concatenate utility.

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines.

    Response rate

    In the 6,276 dwellings selected for the sample, 5,604 households were found to be occupied (Table HH.1). Of these, 4,767 were successfully interviewed for a household response rate of 85.1 percent. The reason for this lower response rate is given in the previous section. In the interviewed households, 3,777 women (age 15-49) were identified. Of these, 3,647 were successfully interviewed, yielding a response rate of 96.6 percent. In addition, 1,444 children under age five were listed in the household questionnaire. Of these, questionnaires were completed for 1,427 which correspond to a response rate of 98.8 percent.

    Overall response rates of 82.1 and 84.1 percent were calculated for the women's and under-5's interviews respectively. Note that the response rates for the Kingston Metropolitan Area (KMA) were lower than in other urban areas and in the rural area. Two factors contributed to this - more dwellings were vacant, often as a result of urban violence, and in the upper income areas access to dwellings was more difficult. In the rural areas, the rains prevented access to some households as some roads were inundated.

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation

  12. Albero study: a longitudinal database of the social network and personal...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, csv
    Updated Mar 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isidro Maya Jariego; Isidro Maya Jariego; Daniel Holgado Ramos; Daniel Holgado Ramos; Deniza Alieva; Deniza Alieva (2021). Albero study: a longitudinal database of the social network and personal networks of a cohort of students at the end of high school [Dataset]. http://doi.org/10.5281/zenodo.3532048
    Explore at:
    bin, csvAvailable download formats
    Dataset updated
    Mar 26, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Isidro Maya Jariego; Isidro Maya Jariego; Daniel Holgado Ramos; Daniel Holgado Ramos; Deniza Alieva; Deniza Alieva
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT

    The Albero study analyzes the personal transitions of a cohort of high school students at the end of their studies. The data consist of (a) the longitudinal social network of the students, before (n = 69) and after (n = 57) finishing their studies; and (b) the longitudinal study of the personal networks of each of the participants in the research. The two observations of the complete social network are presented in two matrices in Excel format. For each respondent, two square matrices of 45 alters of their personal networks are provided, also in Excel format. For each respondent, both psychological sense of community and frequency of commuting is provided in a SAV file (SPSS). The database allows the combined analysis of social networks and personal networks of the same set of individuals.

    INTRODUCTION

    Ecological transitions are key moments in the life of an individual that occur as a result of a change of role or context. This is the case, for example, of the completion of high school studies, when young people start their university studies or try to enter the labor market. These transitions are turning points that carry a risk or an opportunity (Seidman & French, 2004). That is why they have received special attention in research and psychological practice, both from a developmental point of view and in the situational analysis of stress or in the implementation of preventive strategies.

    The data we present in this article describe the ecological transition of a group of young people from Alcala de Guadaira, a town located about 16 kilometers from Seville. Specifically, in the “Albero” study we monitored the transition of a cohort of secondary school students at the end of the last pre-university academic year. It is a turning point in which most of them began a metropolitan lifestyle, with more displacements to the capital and a slight decrease in identification with the place of residence (Maya-Jariego, Holgado & Lubbers, 2018).

    Normative transitions, such as the completion of studies, affect a group of individuals simultaneously, so they can be analyzed both individually and collectively. From an individual point of view, each student stops attending the institute, which is replaced by new interaction contexts. Consequently, the structure and composition of their personal networks are transformed. From a collective point of view, the network of friendships of the cohort of high school students enters into a gradual process of disintegration and fragmentation into subgroups (Maya-Jariego, Lubbers & Molina, 2019).

    These two levels, individual and collective, were evaluated in the “Albero” study. One of the peculiarities of this database is that we combine the analysis of a complete social network with a survey of personal networks in the same set of individuals, with a longitudinal design before and after finishing high school. This allows combining the study of the multiple contexts in which each individual participates, assessed through the analysis of a sample of personal networks (Maya-Jariego, 2018), with the in-depth analysis of a specific context (the relationships between a promotion of students in the institute), through the analysis of the complete network of interactions. This potentially allows us to examine the covariation of the social network with the individual differences in the structure of personal networks.

    PARTICIPANTS

    The social network and personal networks of the students of the last two years of high school of an institute of Alcala de Guadaira (Seville) were analyzed. The longitudinal follow-up covered approximately a year and a half. The first wave was composed of 31 men (44.9%) and 38 women (55.1%) who live in Alcala de Guadaira, and who mostly expect to live in Alcala (36.2%) or in Seville (37.7%) in the future. In the second wave, information was obtained from 27 men (47.4%) and 30 women (52.6%).

    DATE STRUCTURE AND ARCHIVES FORMAT

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    Social network

    The file “Red_Social_t1.xlsx” is a valued matrix of 69 actors that gathers the relations of knowledge and friendship between the cohort of students of the last year of high school in the first observation. The file “Red_Social_t2.xlsx” is a valued matrix of 57 actors obtained 17 months after the first observation.

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    In order to generate each complete social network, the list of 77 students enrolled in the last year of high school was passed to the respondents, asking that in each case they indicate the type of relationship, according to the following values: 1, “his/her name sounds familiar"; 2, "I know him/her"; 3, "we talk from time to time"; 4, "we have good relationship"; and 5, "we are friends." The two resulting complete networks are represented in Figure 2. In the second observation, it is a comparatively less dense network, reflecting the gradual disintegration process that the student group has initiated.

    Personal networks

    Also in this case the information is organized in two observations. The compressed file “Redes_Personales_t1.csv” includes 69 folders, corresponding to personal networks. Each folder includes a valued matrix of 45 alters in CSV format. Likewise, in each case a graphic representation of the network obtained with Visone (Brandes and Wagner, 2004) is included. Relationship values range from 0 (do not know each other) to 2 (know each other very well).

    Second, the compressed file “Redes_Personales_t2.csv” includes 57 folders, with the information equivalent to each respondent referred to the second observation, that is, 17 months after the first interview. The structure of the data is the same as in the first observation.

    Sense of community and metropolitan displacements

    The SPSS file “Albero.sav” collects the survey data, together with some information-summary of the network data related to each respondent. The 69 rows correspond to the 69 individuals interviewed, and the 118 columns to the variables related to each of them in T1 and T2, according to the following list:

    • Socio-economic data.

    • Data on habitual residence.

    • Information on intercity journeys.

    • Identity and sense of community.

    • Personal network indicators.

    • Social network indicators.

    DATA ACCESS

    Social networks and personal networks are available in CSV format. This allows its use directly with UCINET, Visone, Pajek or Gephi, among others, and they can be exported as Excel or text format files, to be used with other programs.

    The visual representation of the personal networks of the respondents in both waves is available in the following album of the Graphic Gallery of Personal Networks on Flickr: <https://www.flickr.com/photos/25906481@N07/albums/72157667029974755>.

    In previous work we analyzed the effects of personal networks on the longitudinal evolution of the socio-centric network. It also includes additional details about the instruments applied. In case of using the data, please quote the following reference:

    • Maya-Jariego, I., Holgado, D. & Lubbers, M. J. (2018). Efectos de la estructura de las redes personales en la red sociocéntrica de una cohorte de estudiantes en transición de la enseñanza secundaria a la universidad. Universitas Psychologica, 17(1), 86-98. https://doi.org/10.11144/Javeriana.upsy17-1.eerp

    The English version of this article can be downloaded from: https://tinyurl.com/yy9s2byl

    CONCLUSION

    The database of the “Albero” study allows us to explore the co-evolution of social networks and personal networks. In this way, we can examine the mutual dependence of individual trajectories and the structure of the relationships of the cohort of students as a whole. The complete social network corresponds to the same context of interaction: the secondary school. However, personal networks collect information from the different contexts in which the individual participates. The structural properties of personal networks may partly explain individual differences in the position of each student in the entire social network. In turn, the properties of the entire social network partly determine the structure of opportunities in which individual trajectories are displayed.

    The longitudinal character and the combination of the personal networks of individuals with a common complete social network, make this database have unique characteristics. It may be of interest both for multi-level analysis and for the study of individual differences.

    ACKNOWLEDGEMENTS

    The fieldwork for this study was supported by the Complementary Actions of the Ministry of Education and Science (SEJ2005-25683), and was part of the project “Dynamics of actors and networks across levels: individuals,

  13. e

    Special Eurobarometer SP564 : Attitudes towards EU Enlargement

    • data.europa.eu
    excel xlsx, zip
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Directorate-General for Communication (2025). Special Eurobarometer SP564 : Attitudes towards EU Enlargement [Dataset]. https://data.europa.eu/data/datasets/s3413_103_2_sp564_eng?locale=de
    Explore at:
    excel xlsx, zipAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Directorate-General for Communication
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Area covered
    European Union
    Description

    56% of EU citizens are in favour of further EU enlargement. Support is particularly high among young people: around two-thirds of respondents aged 15 to 39 believe the (potential) candidates should join the EU once they meet the necessary conditions.

    Processed data

    Processed data files for the Eurobarometer surveys are published in .xlsx format.

    • Volume A "Countries/EU" The file contains frequencies and means or other synthetic indicators including elementary bivariate statistics describing distribution patterns of (weighted) replies for each country or territory and for (weighted) EU results.
    • Volume AP "Previous survey trends" The file compares to the previous poll in (weighted) frequencies and means (or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies); shifts for each country or territory foreseen in Volume A and for (weighted) results.
    • Volume AA "Groups of countries" The file contains (labelled) frequencies and means or other synthetic indicators including elementary bivariate statistics describing distribution patterns of (weighted) replies for groups of countries specified by the managing unit on the part of the EC.
    • Volume AAP "Trends of groups of countries" The file contains shifts compared to the previous poll in (weighted) frequencies and means (or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies); shifts for each groups of countries foreseen in Volume AA and for (weighted) results.
    • Volume B "EU/socio-demographics" The file contains (labelled) frequencies and means or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies for the EU as a whole (weighted) and cross-tabulated by some 20 sociodemographic, socio-political or other variables, depending on the request from the managing unit on the part of the EC or the managing department of the other contracting authorities.
    • Volume BP "Trends of EU/socio-demographics" The file contains shifts compared to the previous poll in (weighted) frequencies and means (or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies); shifts for each country or territory foreseen in Volume B above)and for (weighted) results.
    • Volume C "Country/socio-demographics" The file contains (labelled) weighted frequencies and means or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies for each country or territory surveyed separately and cross-tabulated by some 20 socio-demographic, socio-political or other variables (including a regional breakdown).
    • Volume D "Trends"" The file compares to previous polls in (weighted) frequencies and means (or other synthetic indicators including elementary bivariate statistics describing distribution patterns of replies); shifts for each country or territory foreseen in Volume A and for (weighted) results. _

    For SPSS files and questionnaires, please contact GESIS - Leibniz Institute for the Social Sciences: https://www.gesis.org/eurobarometer

  14. i

    Multiple Indicator Cluster Survey 2005 - Mongolia

    • webapps.ilo.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office (2017). Multiple Indicator Cluster Survey 2005 - Mongolia [Dataset]. https://webapps.ilo.org/surveyLib/index.php/catalog/1417
    Explore at:
    Dataset updated
    Apr 27, 2017
    Dataset authored and provided by
    National Statistical Office
    Time period covered
    2005
    Area covered
    Mongolia
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments, such as the United Nations General Assembly Special Session (UNGASS) on HIV/AIDS and the Abuja targets for malaria. The survey has been a joint endeavor of the Government of Mongolia and UNICEF to make an in-depth analysis of Mongolia's child and women health, education, livelihood status and right exercises and to assess the progress of implementation of a National Programme for Child Development and Protection (2002-2010). The data will furnish the preparation process of the national reporting to be presented by the Government of Mongolia at the special session of UN regarding the country's implementation of Declaration of the A World Fit for Children.

    Survey Objectives The primary objectives of “Multiple Indicator Cluster Survey: Child Development 2005-2006” are the following: - To update the data for assessing the situation of child and women and their right exercises - To furnish the data needed for monitoring progress towards the goals of Millennium Declaration and the WorldFit for Children as a basis for future action planning - To contribute to the improvement of data and monitoring systems in Mongolia and strengthen the expertise in the design, implementation and analytical of these systems.

    Survey plans The Mongolia Multiple Indicator Cluster Survey was conducted by the National Statistical Office of Mongolia with the support of the Government of Mongolia and UNICEF. Technical assistance and training for the surveys was provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Mongolia.

    Analysis unit

    • Households (defined as a group of persons who usually live and eat together);

    • Household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household);

    • Women aged 15-49

    • Children aged 0-4

    Universe

    The survey covered all household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The principal objective of the sample design was to provide current and reliable estimates on a set of indicators covering the four major areas of the World Fit for Children declaration, including promoting healthy lives; providing quality education; protecting against abuse, exploitation and violence; and combating HIV/AIDS. The population covered by the MICS - 3 is defined as the universe of all women aged 15-49 and all children aged under 5. A sample of households was selected and all women aged 15-49 identified as usual residents of these households were interviewed. In addition, the mother or the caretaker of all children aged under 5 who were usual residents of the household were also interviewed about the child.

    The MICS - 3 collected data from a nationally representative sample of households, women and children. The primary focus of the MICS - 3 was to provide estimates of key population and health, education, child protection and HIV related indicators for Mongolia as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates for each of the 5 regions for key indicators. Mongolia is divided into 5 regions. Each region is subdivided into provinces (aimags) and a capital city, and each province into soums, a capital city into districts, each soum into bags and each districts into khoroos. As bag and khoroo household and population listing is annually updated, these were taken as primary sampling units. Bags and khoroos with a large population were divided into 2-3 primary sampling units in order to keep the similar number of households for sampling units. Bag and khoroos (primary sampling unit) were selected with probability proportional to size and 25 households within each of these selected units were sampled using the systematic method. The primary sampling unit variable is the cluster (HH1).

    The survey estimates the indicators on the child and women situation by national level, rural, urban areas and regions. Five regions (Western, Khangai, Central, Eastern and Ulaanbaatar) were the main sampling domains and a two stage sampling design was used. Within each region households were selected with probability proportional to size.

    A total of 6325 households in 253 primary sampling units were selected to represent 21 aimags and Ulaanbaatar city. Sample weights were used for estimating the data collected from each of the sampled households. No replacement of households was permitted in case of non-response or non-contactable households. Adjustments were made to the sampling weights to correct for non-response, according to MICS standard procedures.

    Sampling deviation

    No major deviations from the original sample design were made. All primary sampling units were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for the MICS were structured questionnaires based on the MICS - 3 Model Questionnaire with some modifications and additions. A household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. The household questionnaire includes household's characteristics, household listing, education, water and sanitation, child labour, child discipline, child disability, and salt iodization.

    To reflect the country specific characteristics, module “Salt Iodization” of household questionnaire was enlarged by the question about the vitamin enriched flour and module “child discipline” was added with sub-module child behaviour. These additions were made based on the decisions made by work group members and Steering Committee.

    In the meantime, the salt used for household cooking was on site tested to measure the iodine content.

    Household questionnaire was administered to an adult household member who can best represent other members, women questionnaire to women themselves and under-five questionnaire to mothers or caretakers of children under 5 years. Child weights and heights were measured during the interviews.

    The women's questionnaire includes women's characteristics, women listing, child mortality, maternal and infant health, marriage, contraception, attitudes towards family violence, and HIV/AIDS knowledge.

    The children's questionnaire includes children's characteristics, child listing, birth registration and pre-schooling, child development , “A” vitamin supplement, breastfeeding, care of illness, immunization, and anthropometry.

    The questionnaires were developed in Mongolian from the MICS3 Model Questionnaires, and were translated into English.

    In order to check the clarity and logical sequence of questions and determine the interview duration per household, the pretest of questionnaires was made in September 2005 covering the selected households in Erdene soum of Tuv aimag. Based on the findings of the pretest, wording and logical sequence of the questions were improved.

    Cleaning operations

    Data were processed in clusters, with each cluster being processed as a complete unit through each stage of data processing. Each cluster goes through the following steps: 1) Questionnaire reception 2) Office editing and coding 3) Data entry 4) Structure and completeness checking 5) Verification entry 6) Comparison of verification data 7) Back up of raw data 8) Secondary editing 9) Edited data back up After all clusters are processed, all data is concatenated together and then the following steps are completed for all data files: 10) Export to SPSS in 4 files (hh - household, hl - household members, wm - women, ch - children under 5) 11) Recoding of variables needed for analysis 12) Adding of sample weights 13) Calculation of wealth quintiles and merging into data 14) Structural checking of SPSS files 15) Data quality tabulations 16) Production of analysis tabulations

    Details of each of these steps can be found in the data processing documentation, data editing guidelines, data processing programs in CSPro and SPSS, and tabulation guidelines in the MICS manual http://www.childinfo.org/mics/mics3/manual.php

    Data entry was conducted by 8 data entry operators in tow shifts, supervised by 1 data entry supervisors, using a total of 9 computers (8 data entry computers plus one supervisor's computer). All data entry was conducted at the NSO using manual data entry. For data entry, CSPro version 2.6.007 was used with a highly structured data entry program, using system controlled approach that controlled entry of each variable. All range checks and skips were

  15. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • openicpsr.org
    • search.datacite.org
    Updated May 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Hate Crime Data 1991-2017 [Dataset]. http://doi.org/10.3886/E103500V5
    Explore at:
    Dataset updated
    May 18, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1991 - 2017
    Area covered
    United States
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 5 release notes:Adds data in the following formats: SPSS, SAS, and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Adds data for 1991.Fixes bug where bias motivation "anti-lesbian, gay, bisexual, or transgender, mixed group (lgbt)" was labeled "anti-homosexual (gay and lesbian)" prior to 2013 causing there to be two columns and zero values for years with the wrong label.All data is now directly from the FBI, not NACJD. The data initially comes as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. Version 4 release notes: Adds data for 2017.Adds rows that submitted a zero-report (i.e. that agency reported no hate crimes in the year). This is for all years 1992-2017. Made changes to categorical variables (e.g. bias motivation columns) to make categories consistent over time. Different years had slightly different names (e.g. 'anti-am indian' and 'anti-american indian') which I made consistent. Made the 'population' column which is the total population in that agency. Version 3 release notes: Adds data for 2016.Order rows by year (descending) and ORI.Version 2 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Hate Crime data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains information about hate crimes reported in the United States. Please note that the files are quite large and may take some time to open.Each row indicates a hate crime incident for an agency in a given year. I have made a unique ID column ("unique_id") by combining the year, agency ORI9 (the 9 character Originating Identifier code), and incident number columns together. Each column is a variable related to that incident or to the reporting agency. Some of the important columns are the incident date, what crime occurred (up to 10 crimes), the number of victims for each of these crimes, the bias motivation for each of these crimes, and the location of each crime. It also includes the total number of victims, total number of offenders, and race of offenders (as a group). Finally, it has a number of columns indicating if the victim for each offense was a certain type of victim or not (e.g. individual victim, business victim religious victim, etc.). The only changes I made to the data are the following. Minor changes to column names to make all column names 32 characters or fewer (so it can be saved in a Stata format), changed the name of some UCR offense codes (e.g. from "agg asslt" to "aggravated assault"), made all character values lower case, reordered columns. I also added state, county, and place FIPS code from the LEAIC (crosswalk) and generated incident month, weekday, and month-day variables from the incident date variable included in the original data.

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kenya Medical Research Institute (KEMRI) (2019). National Micronutrient Survey 2011 - Kenya [Dataset]. https://catalog.ihsn.org/index.php/catalog/6695/study-description
Organization logo

National Micronutrient Survey 2011 - Kenya

Explore at:
Dataset updated
Mar 29, 2019
Dataset provided by
Kenya National Bureau of Statistics
Kenya Medical Research Institute
Division of Nutrition, Ministry of Public Health and Sanitation (MOPHS)
Time period covered
2011
Area covered
Kenya
Description

Abstract

The Kenya National Micronutrients Survey (NMS) 2011 was the first NMS to be carried by the Kenya National Bureau of Statistics. The purpose of this survey is to ensure the quality of HIV testing and the interpretation of results, both in the laboratory and in the community. Fort HIV testing, it is extremely important that "the correct results go to the right client". The identity of clients and the labelling of test devices should therefore be preserved properly.

Geographic coverage

National

Analysis unit

  • Households
  • Individuals

Universe

The survey covered household members (usual residents), womens questinnaire( aged 15-49 years) resident in the household, children( aged 0-6-49months), School age children (aged 5-14 years) resident in the household and Men questionnire (aged 15-54 year).

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample size estimation The sample size required for each stratum was based on the estimated prevalence for each nutritional indicator, the desired precision for each indicator, an assumed design effect of 2.0, and a non-response of 10% (including refusals) at the household level and 10% at the individual levels for children 6-59 months of age and non-pregnant women. An additional non-response rate of 10% (for a total 30% non-response rate) was assumed for the men and SAC 5-14 years old.

Sampling design In 2010, Kenya ratified a new constitution which established 47 county governments. This change has highlighted the need for national surveys to collect information beyond the provincial level, and move towards collection of county-level estimates. However, obtaining county-level estimates with adequate precision were not considered feasible in KNMS due to limitations in sample size and resources. Therefore KNMS consisted of the three domains as defined earlier. The sampling frame for the 2010 KMNS was based on the National Sample Survey and Evaluation Programme (NASSEP IV) master sampling frame maintained by the Kenya National Bureau of Statistics (KNBS). Administratively, Kenya is divided into 8 provinces. In turn, each province is The Kenya National Micronutrient Survey 2011 subdivided into districts, each district into divisions, each division into locations and each location into sub-locations. In addition to these administrative units, during the last 1999 population census, each sub-location was subdivided into census Enumeration Areas (EAs) i.e. small geographic units with clearly defined boundaries. As defined in the 1999 census, Kenya has eight provinces, 69 districts, and approximately 62,000 EAs. The list of EAs is grouped by administrative units and includes information on the number of households and population. This information was used in 2002 to design a master sample with about 1,800 selected EAs. The cartographic material for each EA in the master sample was updated in the field. The resulting master sampling frame was NASSEP IV which is still currently used by KNBS. The NASSEP IV master frame is a two-stage stratified cluster sample format. The first stage is a selection of Primary Sampling Units (PSUs), which are the EAs using probability proportional to measure of size (PPMOS) method. The second stage involves the selection of households for various surveys. EAs are selected with a basis of one Measure of Size (MOS) defined as the ultimate cluster with an average of 100 households and constitute one (or more) EAs. Although consideration was given to development of a new master frame for KNMS, time and other resource constraints dictated that the sample frame of this survey was NASSEP IV. The KNMS sample was selected using a stratified two-stage cluster design consisting of 296 clusters, 123 in the urban and 173 in the rural areas. From each cluster a total of 10 households were selected using systematic simple random sampling. For the KNMS survey, an urban area was defined as "an area with an increased density of human-created structures in comparison to the areas surrounding it and has a population of 2,000 people and above". Using this definition, urban areas included Cities, Municipalities, Town Councils, Urban Councils and all District Headquarters. A rural area was defined as an isolated large area of an open country in reference to open fields with peoples whose main economic activity was farming. Every attempt was made to conduct interviews in the 10 selected households, and one additional visit was made to ascertain this compliance in cases of absence of household members to minimize potential bias. Non responding households were not replaced.

Mode of data collection

Face-to-face [f2f]

Research instrument

The survey covers household members questionnaire (usual residents), women questinnaire ( aged 15-49 years), preschool children questionnarie( aged 6-59 months), school age children questionnaire (aged 5-14 years) and men questionnire (aged 15-54 year). The hosehold member questionnaire includes: Identification, Interviewer Visits, Socio demographic characteristics, Socio-economic characteristics, Food fortification, Wheat flour fortification, Salt fortification, Sugar fortification, Oils/fats fortification, Interviewer's observations. The women questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, WRA Health questions. The school age children questionnaire includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Dietary Diversity Score Questions, Infant Feeding Practice Questions children 6-35 months, Interviewer Observations, The preschool children questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Interviewer Observations. The men questionnarie includes: Identification, Interviewer Visits, Health questions, Interviewer Observations.

Cleaning operations

The field questionnaires baring household characteristics, individual population characteristics, and anthropometrics measurements were double entered into a computer database designed using MS-Access application. Regular file back-up was done using flash disks and external hard disk to avoid any loss or tampering. Data comparison was done using Epi-info version 7.0. Data cleaning and validation was performed to achieve clean datasets. The datasets were exported into a Statistical Package format (IBM® SPSS® Statistics version 20.0). The laboratory results were entered in excel format and later exported into a Statistical Package format (IBM® SPSS®Statistics version 20.0). Data merging exercise was systematically conducted using the four datasets i.e. household characteristics, individual population characteristics, anthropometrics measurements, and laboratory results. Each of the five populations namely; Pre-school children (PSC), School aged children (SAC), Pregnant women (PW), Non-pregnant women (NPW), and Men were separately merged. Data merging was conducted as follows: STEP1: The 'laboratory results' file was first merged to the 'anthropometrics' file using 'LABLE NUMBER' as the unique identifier. STEP2: The merged 'laboratory + anthropometrics' file was merged to individual population characteristics file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. STEP3: The merged 'laboratory + anthropometrics + individual population characteristics' file was merged to the 'household characteristics' file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. Five master-files were backed-up for safe keeping and a copy was shared with the statisticians for analysis. All the questionnaires and laboratory forms were filed and stored in lockable drawers for confidentiality.

The validated data was exported to SPSS Version 20 for analysis.

Search
Clear search
Close search
Google apps
Main menu