The price of Meta (former Facebook) shares traded on the Nasdaq stock exchange fluctuated significantly but increased overall during the period from May 2012 to January 2025. After peaking at ****** U.S. dollars per share in August 2021, the price of Meta shares started to fluctuate and exceeded its previous peak in 2025. The share price stood at ****** U.S. dollars as of the end of January 2025. Substantial fluctuations in the last few years Meta's stock prices have fluctuated particularly after the rebranding announcement in late 2021. Following the announcement and through 2022, Meta's revenue remained rather stagnant, and its net income decreased considerably. Moreover, the tech giant announced one of the industry's largest layoffs in late 2022. As a result, the share price hit a low of ***** U.S. dollars in October 2022, the lowest value observed since 2016. However, Meta's share price has been steadily recovering since then. Shift in strategy for the world’s first social network Meta has shifted its focus to the metaverse, virtual reality (VR), and augmented reality (AR), with the rebranding in late 2021. As a result, Reality Labs was established as a dedicated business and research unit to focus on developing metaverse and AR/VR technologies. However, as of early 2023, Meta still relies mainly on advertising and its Family of Apps to generate most of its revenue, despite having made significant investments in virtual reality. Reality Labs generated *** billion U.S. dollars in revenue in 2024 and has been consistently incurring operating losses since 2019.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Meta stock price for past 10 years. Following technical indicators added.
Next_Day_Close: Represents the closing price of the stock for the next day. It is useful for predictive models trying to forecast future prices.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Meta Platforms net profit margin for the quarter ending March 31, 2025 was 39.11%. Meta Platforms average net profit margin for 2024 was 34.97%, a 56.47% increase from 2023. Meta Platforms average net profit margin for 2023 was 22.35%, a 13.77% increase from 2022. Meta Platforms average net profit margin for 2022 was 25.92%, a 27.09% decline from 2021. Net profit margin can be defined as net Income as a portion of total sales revenue.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
These data and code successfully reproduce nearly all cross-sectional stock return predictors. The 319 characteristics draw from previous meta-studies, but authors differ by comparing their t-stats to the original papers' results. For the 161 characteristics that were clearly significant in the original papers, 98% of their long-short portfolios find t-stats above 1.96. For the 44 characteristics that had mixed evidence, authors' reproductions find t-stats of 2 on average. A regression of reproduced t-stats on original longshort t-stats finds a slope of 0.90 and an R2 of 83%. Mean returns aremonotonic in predictive signals at the characteristic level. The remaining 114 characteristics were insignificant in the original papers or are modifications of the originals created by Hou, Xue, and Zhang (2020). These remaining characteristics are almost always significant if the original characteristic was also significant.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mangroves provide extensive ecosystem services that support local livelihoods and international environmental goals, including coastal protection, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects seeking to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through field inventories. To streamline C quantification in mangrove conservation projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We compile datasets of mangrove biomass C (197 observations from 48 sites) and soil organic C (99 observations from 27 sites) to parameterize the predictive models, and use linear mixed effect models to model the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, which are found to explain a substantial proportion of variance within the estimation datasets and indicate significant heterogeneity across-sites within the region. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm3 (14.1% of mean soil C). The results point to a need for standardization of forest metrics to facilitate meta-analyses, as well as provide important considerations for refining ecosystem C stock models in mangroves.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management’s Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model’s accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management’s Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model’s accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management’s Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model’s accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management’s Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model’s accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management’s Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model’s accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The price of Meta (former Facebook) shares traded on the Nasdaq stock exchange fluctuated significantly but increased overall during the period from May 2012 to January 2025. After peaking at ****** U.S. dollars per share in August 2021, the price of Meta shares started to fluctuate and exceeded its previous peak in 2025. The share price stood at ****** U.S. dollars as of the end of January 2025. Substantial fluctuations in the last few years Meta's stock prices have fluctuated particularly after the rebranding announcement in late 2021. Following the announcement and through 2022, Meta's revenue remained rather stagnant, and its net income decreased considerably. Moreover, the tech giant announced one of the industry's largest layoffs in late 2022. As a result, the share price hit a low of ***** U.S. dollars in October 2022, the lowest value observed since 2016. However, Meta's share price has been steadily recovering since then. Shift in strategy for the world’s first social network Meta has shifted its focus to the metaverse, virtual reality (VR), and augmented reality (AR), with the rebranding in late 2021. As a result, Reality Labs was established as a dedicated business and research unit to focus on developing metaverse and AR/VR technologies. However, as of early 2023, Meta still relies mainly on advertising and its Family of Apps to generate most of its revenue, despite having made significant investments in virtual reality. Reality Labs generated *** billion U.S. dollars in revenue in 2024 and has been consistently incurring operating losses since 2019.