1 dataset found
  1. m

    PYTHON code and MATLAB code for "Multi-fidelity Meta-optimization for Nature...

    • data.mendeley.com
    Updated Jul 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hui Li (2020). PYTHON code and MATLAB code for "Multi-fidelity Meta-optimization for Nature Inspired Optimization Algorithms" [Dataset]. http://doi.org/10.17632/pj6d526kzm.2
    Explore at:
    Dataset updated
    Jul 24, 2020
    Authors
    Hui Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    (version 2)

    We add the MATLAB version (multi-fidelity-parameter-tuning-matlab.zip) , hoping researchers who program with MATLAB will find it helpful.

    The structure of the MATLAB code is:

    1. Algorithm (Algorithm.m): 1.1 Basic Algorithm: 1.1.1 PSO.m 1.1.2 GWO.m 2.2 Multi-fidelity Parameter Tuning: 2.2.1 FidelityControlFunction.m 2.2.2 MFOptimizedNIO.m 2.2.2.1 MFOptimizedPSO.m 2.2.3 MFMetaGWO.m

    2. Cost Function: 2.1 SphereFunc.m 2.2 CEC14Func.m 2.2.1 input_data 2.2.2 cec14_func.cpp 2.2.3 cec14_func.mexw64

    3. Demo: 3.1 DemoMF.m

    One can run demo as follows:

    1. Go into project root: <YOUR_WORKSPACE>/multi-fidelity-parameter-tuning-matlab
    2. Run the following command in MATLAB window: DemoMF

    One can compile CEC 2014 as follows:

    Run the following command to create CEC 2014 library in MATLAB: mex cec14_func.cpp -DWINDOWS

    (version 1)

    The python code is used in the manuscript "Multi-fidelity Meta-optimization for Nature Inspired Optimization Algorithms" submitted to "Applied soft computing". The programming environment is: Python 3.6 or higher.

    The folders in the package include: 1. algorithms: Basic algorithms, including base class 'Algorithm' and [CS, DE, FOA, GWO, KH, PSO, SSA, WWO, WOA]. 2. applications: An engineering application: source term estimation. 3. benchmarks: Test functions, including base class 'Benchmark', basic test functions and 'CEC2014 Benchmark Suite'. 4. demo: Examples. 5. parameter_tuning: Multi-fidelity meta-NIOs and optimized-NIOs.

    If you prefer using the command line to run the program, please do not forget to manually add the working directory to 'sys.path'.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hui Li (2020). PYTHON code and MATLAB code for "Multi-fidelity Meta-optimization for Nature Inspired Optimization Algorithms" [Dataset]. http://doi.org/10.17632/pj6d526kzm.2

PYTHON code and MATLAB code for "Multi-fidelity Meta-optimization for Nature Inspired Optimization Algorithms"

Explore at:
Dataset updated
Jul 24, 2020
Authors
Hui Li
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

(version 2)

We add the MATLAB version (multi-fidelity-parameter-tuning-matlab.zip) , hoping researchers who program with MATLAB will find it helpful.

The structure of the MATLAB code is:

  1. Algorithm (Algorithm.m): 1.1 Basic Algorithm: 1.1.1 PSO.m 1.1.2 GWO.m 2.2 Multi-fidelity Parameter Tuning: 2.2.1 FidelityControlFunction.m 2.2.2 MFOptimizedNIO.m 2.2.2.1 MFOptimizedPSO.m 2.2.3 MFMetaGWO.m

  2. Cost Function: 2.1 SphereFunc.m 2.2 CEC14Func.m 2.2.1 input_data 2.2.2 cec14_func.cpp 2.2.3 cec14_func.mexw64

  3. Demo: 3.1 DemoMF.m

One can run demo as follows:

  1. Go into project root: <YOUR_WORKSPACE>/multi-fidelity-parameter-tuning-matlab
  2. Run the following command in MATLAB window: DemoMF

One can compile CEC 2014 as follows:

Run the following command to create CEC 2014 library in MATLAB: mex cec14_func.cpp -DWINDOWS

(version 1)

The python code is used in the manuscript "Multi-fidelity Meta-optimization for Nature Inspired Optimization Algorithms" submitted to "Applied soft computing". The programming environment is: Python 3.6 or higher.

The folders in the package include: 1. algorithms: Basic algorithms, including base class 'Algorithm' and [CS, DE, FOA, GWO, KH, PSO, SSA, WWO, WOA]. 2. applications: An engineering application: source term estimation. 3. benchmarks: Test functions, including base class 'Benchmark', basic test functions and 'CEC2014 Benchmark Suite'. 4. demo: Examples. 5. parameter_tuning: Multi-fidelity meta-NIOs and optimized-NIOs.

If you prefer using the command line to run the program, please do not forget to manually add the working directory to 'sys.path'.

Search
Clear search
Close search
Google apps
Main menu