Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Metropolitan DivisionsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Metropolitan Divisions within the United States. According to the USCB, "Metropolitan Divisions subdivide a Metropolitan Statistical Area (MSA) containing a single core urban area that has a population of at least 2.5 million to form smaller groupings of counties or equivalent entities. Not all MSAs with urban areas of this size will contain Metropolitan Divisions. Not all MSAs with urban areas of this size will contain Metropolitan Divisions. Metropolitan Division are defined by the Office of Management and Budget (OMB) and consist of one or more main counties or equivalent entities that represent an employment center or centers, plus adjacent counties associated with the main county or counties through commuting ties."Nassau County-Suffolk County, NY Metro Division & New Brunswick-Lakewood, NJ Metro DivisionData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Metropolitan Divisions) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 83 (Series Information for Metropolitan Division National TIGER/Line Shapefiles, Current)OGC API Features Link: (Metropolitan Divisions - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Geographic LevelsFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
Facebook
TwitterThe dataset includes the CDR of Riyadh city, the Traffic Analysis Zones (TAZs) locations, proposed metro stations, demographic data about the city, and the road network. Those will be explored in the following.CDRCDR data represents a digital record containing information about a telephone call or communication session. A CDR typically includes information such as the caller's and recipient's phone numbers, the date and time of the call, the duration of the call, and any additional services or features used during the call (e.g., call forwarding, call waiting). In addition, CDRs may contain information about the type of call (voice, video, data), the caller's or recipient's location, and details about any supplementary services utilized during the call.The CDR file used is provided by STC for Riyadh and collected from 1,712 towers over a month, separated by hours. Each hour contains call details during that hour. These details include information about where calls originated and ended and at what hour of the day. TAZTraffic Analysis Zones (TAZs) are geographical areas defined and used for transportation planning and traffic analysis purposes. TAZs are created by dividing a large region or area into smaller sub-areas based on population density, land use patterns, transportation infrastructure, and socio-economic characteristics.TAZs are defined to facilitate transportation planning and analysis by providing a more granular and manageable unit for studying travel patterns and forecasting transportation demand. TAZs are often used in transportation models and simulations to estimate and analyze traffic flows, travel behavior, and travel demand within specific areas. As part of this study, Riyadh city is defined as 1,492 TAZs.Metro StationsIn this study, we consider the 84 metro stations. Based on the spatial information of each TAZ, we associated each TAZ with the closest metro station. This made it easier to predict metro usage.Demographic DataThe demographic data is available in TAZ. Each TAZ includes data on the total population of males, females, and non-Saudis. Females and non-Saudis are expected to utilize the metro more based on the sociocultural implications of the region. Hence, areas with higher concentrations of those populations expect more metro usage.Road NetworkThe road network comprises several thousand lines, each represented by numerous points defined by latitude and longitude. These points constitute nodes. These road lines are the pathways that users travel on while making a call.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data on European cities were collected in the Urban Audit and in the Large City Audit project. The projects' ultimate goal is to contribute towards the improvement of the quality of urban life: it supports the exchange of experience among European cities; it helps to identify best practices; it facilitates benchmarking at the European level and provides information on the dynamics within the cities and with their surroundings.
At the city level, the Urban Audit contains more than 130 variables and more than 50 indicators. These indicators are derived from the variables collected by the European Statistical System.
The data is published in 20 tables within 2 main groups, plus a perception survey table:
Cities and greater cities (urb_cgc)
Population on 1 January by age groups and sex - cities and greater cities (urb_cpop1)
Population structure - cities and greater cities (urb_cpopstr)
Population by citizenship and country of birth - cities and greater cities (urb_cpopcb)
Fertility and mortality - cities and greater cities (urb_cfermor)
Living conditions - cities and greater cities (urb_clivcon)
Education - cities and greater cities (urb_ceduc)
Culture and tourism - cities and greater cities (urb_ctour)
Labour market - cities and greater cities (urb_clma)
Economy and finance - cities and greater cities (urb_cecfi)
Transport - cities and greater cities (urb_ctran)
Environment - cities and greater cities (urb_cenv)
Functional Urban Area (urb_luz)
Population on 1 January by age groups and sex - Functional Urban Area (urb_lpop1)
Population structure - Functional Urban Area (urb_lpopstr)
Population by citizenship and country of birth - Functional Urban Area (urb_lpopcb)
Fertility and mortality - Functional Urban Area (urb_lfermor)
Living conditions - Functional Urban Area (urb_llivcon)
Education - Functional Urban Area (urb_leduc)
Labour market - Functional Urban Area (urb_llma)
Transport - Functional Urban Area (urb_ltran)
Environment - Functional Urban Area (urb_lenv)
Perception survey results (urb_percep)
Data has been collected on two spatial levels in the Urban Audit:
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The NECTA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2020.
Facebook
TwitterVITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Facebook
TwitterThe 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2015, 2017, and 2018.
Facebook
TwitterThis data layer produced by the National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimates (EDGE) program provides a geographic locale framework that classifies all U.S. territory into twelve categories ranging from Large Cities to Remote Rural areas. NCES uses this framework to describe the type of geographic area where schools and school districts are located. The criteria for these classifications are defined by NCES and rely on standard geographic areas developed and maintained by the U.S. Census Bureau. The NCES Locale boundaries are based on geographic areas represented in Census TIGER/Line. For more information about the NCES locale framework, and to download the data, see: https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries. The classifications include:City - Large (11): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population of 250,000 or more.City - Midsize (12): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 250,000 and greater than or equal to 100,000.City - Small (13): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 100,000.Suburb – Large (21): Territory outside a Principal City and inside an Urban Area with population of 250,000 or more.Suburb - Midsize (22): Territory outside a Principal City and inside an Urban Area with population less than 250,000 and greater than or equal to 100,000.Suburb - Small (23): Territory outside a Principal City and inside an Urban Area with population less than 100,000. Town - Fringe (31): Territory inside an Urban Area with a population less than 50,000 that is less than or equal to 10 miles from an Urban Area with a population of 50,000 or more.Town - Distant (32): Territory inside an Urban Area with a population less than 50,000 that is more than 10 miles and less than or equal to 35 miles from an Urban Area with a population of 50,000 or more.Town - Remote (33): Territory inside an Urban Area with a population less than 50,000 that is more than 35 miles of an Urban Area with a population of 50,000 or more.Rural - Fringe (41): Census-defined rural territory that is less than or equal to 5 miles from an Urban Area of 50,000 or more, as well as rural territory that is less than or equal to 2.5 miles from an Urban Area with a population less than 50,000.Rural - Distant (42): Census-defined rural territory that is more than 5 miles but less than or equal to 25 miles from an Urban Area with a population of 50,000 or more, as well as rural territory that is more than 2.5 miles but less than or equal to 10 miles from an Urban Area with a population less than 50,000.Rural - Remote (43): Census-defined rural territory that is more than 25 miles from an Urban Area with a population of 50,000 or more and is also more than 10 miles from an Urban Area with a population less than 50,000.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
TwitterIn 2025, the degree of urbanization worldwide was at 58 percent. North America, Latin America, and the Caribbean were the regions with the highest level of urbanization, with over four-fifths of the population residing in urban areas. The degree of urbanization defines the share of the population living in areas defined as "cities". On the other hand, less than half of Africa's population lives in urban settlements. Globally, China accounts for over one-quarter of the built-up areas of more than 500,000 inhabitants. The definition of a city differs across various world regions - some countries count settlements with 100 houses or more as urban, while others only include the capital of a country or provincial capitals in their count. Largest agglomerations worldwideThough North America is the most urbanized continent, no U.S. city was among the top ten urban agglomerations worldwide in 2023. Tokyo-Yokohama in Japan was the largest urban area in the world that year, with 37.7 million inhabitants. New York ranked 13th, with 21.4 million inhabitants. Eight of the 10 most populous cities are located in Asia. ConnectivityIt may be hard to imagine how the reality will look in 2050, with 70 percent of the global population living in cities, but some statistics illustrate the ways urban living differs from suburban and rural living. American urbanites may lead more “connected” (i.e., internet-connected) lives than their rural and/or suburban counterparts. As of 2021, around 89 percent of people living in urban areas owned a smartphone. Internet usage was also higher in cities than in rural areas. On the other hand, rural areas always have, and always will, attract those who want to escape the rush of the city.
Facebook
TwitterThe 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
Facebook
TwitterDataset SummaryAbout this data:This feature layer symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2021 five-year samples.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2017-2021 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.Dictionary: Division: The name of the data division. Total_Popu: The total population of the division. The population is calculated from the Census Bureau’s American Community Survey 2021 five-year samples. Percentage: Represents the percentage of City of Rochester residents which live in the division. Area_in_Sq: The total area in square miles of a given division. Source:City of Rochester Office of Innovation
Facebook
TwitterIn 2024, Seoul had the highest population density of all provinces in South Korea, with about ****** people per square kilometer. The port city of Busan, which lies 300 kilometers southeast of Seoul, followed with about ***** residents per square kilometer. With 90 people per square kilometer, Gangwon was the province with the lowest population density. Population of Seoul The capital of South Korea, Seoul, is the country's largest city with a population of nearly 9.5 million people, meaning that about 20 percent of South Korea's total population live in Seoul. Together with the surrounding Gyeonggi Province and Incheon Metropolitan Area, the greater Seoul region (or Seoul Capital Area) is home to half of the total population of South Korea. This region also forms one of the largest metropolitan areas in the world. Solving the problem of overpopulation in Seoul One of the major problems stemming from overpopulation in Seoul is the housing shortage, leading to a significant surge in real estate prices. Over the past few years, several efforts have been made to curb the excessive population concentration and to solve the associated economic and social problems. In 2007, for example, former President Roh Moo-hyun attempted to move the country's administrative capital to Sejong, which is located 120 kilometers south of Seoul. Although the grand plan did not fully work out, around 40 central administrative agencies have since been moved from Seoul to Sejong, turning the city into the de facto administrative capital of South Korea.
Facebook
TwitterVITAL SIGNS INDICATOR
Transit Ridership (T11)
FULL MEASURE NAME
Daily transit boardings
LAST UPDATED
February 2023
DESCRIPTION
Transit ridership refers to the number of passenger boardings on public transportation, which includes buses, rail systems and ferries. The dataset includes metropolitan area, regional, mode and operator tables for total typical weekday boardings.
DATA SOURCE
Federal Transit Administration: National Transit Database - http://www.ntdprogram.gov/ntdprogram/data.htm
1991-2022
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1991-2022
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1991-2022
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The National Transit Database (NTD) dataset was lightly cleaned to correct for erroneous zero values - in which null values (unsubmitted data) were incorrectly marked as zeroes. Paratransit data is sparse in early years of the NTD dataset, meaning that transit ridership estimates in the early 1990s are likely underestimated. Simple modes were aggregated to combine the various bus modes (e.g. rapid bus, express bus, local bus) into a single mode to avoid incorrect conclusions resulting from mode recoding over the lifespan of NTD.
2022 data should be considered preliminary, as it comes from the monthly data tables rather than the longer-term time series dataset. Weekday ridership is calculated by taking the total annual ridership and dividing by 300, an assumption which is consistent with MTC travel modeling procedures; it was also compared to observed weekday boarding data (which is more limited in availability) to ensure consistency on the regional level. Per-capita transit ridership is calculated for the operator's general service area or taxation district; for example, BART includes the three core counties (San Francisco, Alameda, and Contra Costa), as well as northern San Mateo County post-SFO extension, and AC Transit includes the cities located within its service area. For other metro areas, operators were identified by developing a list of all urbanized areas within a current MSA boundary and then using that UZA list to flag relevant operators; this means that all operators (both large and small) were included in the metro comparison data.
Facebook
Twitterhttps://opendata.vancouver.ca/pages/licence/https://opendata.vancouver.ca/pages/licence/
The census is Canada's largest and most comprehensive data source conducted by Statistics Canada every five years. The Census of Population collects demographics and linguistic information on every man, woman and child living in Canada. The data shown here is provided by Statistics Canada from the 2001 Census as a custom profile data order for the City of Vancouver, using the City's 22 local planning areas. The data may be reproduced provided they are credited to Statistics Canada, Census 2001, custom order for City of Vancouver Local Areas.Data AccessThis dataset has not yet been converted to a format compatible with our new platform. Please use the links below to access the files from our legacy site. Census local area profiles 2001 (CSV) Census local area profiles 2001 (XLS) Dataset schema (Attributes) Please see the Census local area profiles 2001 attributes page. NoteThe 22 Local Areas is defined by the Census blocks and is equal to the City's 22 local planning areas and includes the Musqueam 2 reserve.Vancouver CSD (Census Subdivision) is defined by the City of Vancouver municipal boundary which excludes the Musqueam 2 reserve but includes Stanley Park.Vancouver CMA (Census Metropolitan Area) is defined by the Metro Vancouver boundary which includes the following Census Subdivisions: Vancouver, Surrey, Burnaby, Richmond, Coquitlam, District of Langley, Delta, District of North Vancouver, Maple Ridge, New Westminster, Port Coquitlam, City of North Vancouver, West Vancouver, Port Moody, City of Langley, White Rock, Pitt Meadows, Greater Vancouver A, Bowen Island, Capilano 5, Anmore, Musqueam 2, Burrard Inlet 3, Lions Bay, Tsawwassen, Belcarra, Mission 1, Matsqui 4, Katzie 1, Semiahmoo, Seymour Creek 2, McMillian Island 6, Coquitlam 1, Musqueam 4, Coquitlam 2, Katzie 2, Whonnock 1, Barnston Island 3, and Langley 5. Data products that are identified as 20% sample data refer to information that was collected using the long census questionnaire. For the most part, these data were collected from 20% of the households; however they also include some areas, such as First Nations communities and remote areas, where long census form data were collected from 100% of the households. The following changes were made to the census family concept for 2001 and account for some of the increase in the total number of families, single parent families and children living at home: Two persons living in a same-sex common law relationship are now considered a family. Children living at home now include previously married children, provided they are not currently living with a spouse or common-law partner. A grandchild living in a three generation household where the parent (middle generation) was never married is now considered a child of the census family. A grandchild of a three-generation household where the middle generation is not present is now considered a child of the census family.Mode of transportation to work data is not reliable for the 2001 Census due to the TransLink Transit Strike that occurred during the data collection period. Data currencyThe data for Census 2001 was collected in May 2001. Data accuracyStatistics Canada is committed to protect the privacy of all Canadians and the confidentiality of the data they provide to us. As part of this commitment, some population counts of geographic areas are adjusted in order to ensure confidentiality. Counts of the total population are rounded to a base of 5 for any dissemination block having a population less than 15. Population counts for all standard geographic areas above the dissemination block level are derived by summing the adjusted dissemination block counts. The adjustment of dissemination block counts is controlled to ensure that the population counts for dissemination areas will always be within 5 of the actual values. The adjustment has no impact on the population counts of census divisions and large census subdivisions. Websites for further information Statistics Canada 2001 Census Dictionary Local area boundary dataset
Facebook
TwitterAs of 2023, an estimated ******* households in New York City lived in properties with lead or possible lead water service lines (LSL). This equates to some *** million people. New York City has a population of roughly *** million, meaning that roughly one in five New Yorkers could be drinking lead-contaminated water. The water supplier for NYC is the Department of Environmental Protection (DEP). Lead exposure can have serious adverse health impacts in humans of all ages, though children are the most susceptible. One of the most high-profile examples of lead-contamination in the U.S. is Flint, Michigan, where high concentrations of lead were detected in the city's drinking water in 2014.
Facebook
TwitterIn 2022, the New Orleans-Metairie, LA metro area recorded the highest homicide rate of U.S. cities with a population over 250,000, at **** homicides per 100,000 residents, followed by the Memphis, TN-MS-AR metro area. However, homicide data was not recorded in all U.S. metro areas, meaning that there may be some cities with a higher homicide rate. St. Louis St. Louis, which had a murder and nonnegligent manslaughter rate of **** in 2022, is the second-largest city by population in Missouri. It is home to many famous treasures, such as the St. Louis Cardinals baseball team, Washington University in St. Louis, the Saint Louis Zoo, and the renowned Gateway Arch. It is also home to many corporations, such as Monsanto, Arch Coal, and Emerson Electric. The economy of St. Louis is centered around business and healthcare, and boasts ten Fortune 500 companies. Crime in St. Louis Despite all of this, St. Louis suffers from high levels of crime and violence. As of 2023, it was listed as the seventh most dangerous city in the world as a result of their extremely high murder rate. Not only does St. Louis have one of the highest homicide rates in the United States, it also reports one of the highest numbers of violent crimes. Despite high crime levels, the GDP of the St. Louis metropolitan area has been increasing since 2001.
Facebook
TwitterFrom 2013 to 2023, the number of inhabitants in the City of Copenhagen grew steadily. While almost 560,000 people lived in Copenhagen 2013, that had increased to nearly 654,000 in 2023, meaning that the population of Denmark's Capital increased by almost 100,000 during that period. Of these, a majority is women.
Copenhagen: A young city
The City of Copenhagen is characterized by an overwhelmingly young population. In 2022, 158,000 of the city's inhabitants were from 20 to 29 years old. Moreover, the second largest age group was those between 30 and 39 years.
Other major cities
If the Greater Copenhagen metropolitan area is taken into account, the total population of the city is more than 1.3 million inhabitants. Aarhus, Denmark's second largest city located on the Jutland peninsula, had 285,000 inhabitants in 2022. Denmark's third largest city is Odense with 180,000 inhabitants.
Facebook
TwitterThe African Cities Population Database (ACPD) has been produced by the Birkbeck College of the University of London in 1990 at the request of the United Nations Environment Programme (UNEP) in Nairobi, Kenya. The database contains head counts for 479 cities in Africa which either have a population of over 20,000 or are capitals of their nation state. Listed are the geographical location of the cities and their population sizes. The material is primarily derived from a 1988 report of the Economic Commission for Africa (ECA) and several issues of the United Nations Demographic Yearbook (1973-81). Severe problems were found with several countries such as Togo, Ghana and South Africa. For South Africa, the data were derived from the United Nations Demographic Yearbook 1987.
WCPD is an Arc/Info point coverage. It has no projection, as the cities are located on the basis of their latitude and longitude. Coordinates were assigned on the basis of gazetteers or African maps. Each record in the data base contains details of the city name, country name, latitude and longitude of the city, and its population at a defined time. The Arc/Info attribute table contains the following fields:
AREA Arc/Info item PERIMETER Arc/Info item ACPD# Arc/Info item ACPD-ID Arc/Info item ID-NUM Unique number for each city CITY City name COUNTRY Country name CITY-POP Population of city proper YEAR Latest available year of collection
ACPD comes as an Arc/Info EXPORT file originally called "ACPD.E00" and contains 67 Kb of data. The file has a record length of 80 and a block size of 8000 (blocking factor = 100). The file can be read from tape using Arc/Info's TAPEREAD command or any other generic copy utility. If distributed on a diskette it can be read using the ordinary DOS 'COPY' command. The file has to be converted to Arc/Info internal format using its IMPORT command.
References to the WCPD data set can be found in:
The source of the WCPD data set as held by GRID is Birkbeck College, University of London, Department of Geography, London, UK.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.