Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.
Facebook
TwitterIn 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.
Facebook
TwitterThis system provides the user with a facility to select a state and county combination to determine if the selected county is part of an Office of Management and Budget (OMB) defined Core Based Statistical Area (CBSA). The system has been updated with OMB area definitions published for FY 2009.
Facebook
TwitterThis statistics shows a list of the top 20 largest-metropolitan areas in the United States in 2010, by land area. Riverside-San Bernardino-Ontario in California was ranked first enclosing an area of 70,612 square kilometers.
Facebook
TwitterThe Urban Areas dataset was compiled on January 01, 2025 from the U.S. Department of Commerce, U.S. Census Bureau, Geography Division and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,644 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a five-character numeric census code that may contain leading zeros. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529088
Facebook
TwitterIn 2023, about 19.5 million people populated the New York-Newark-Jersey City metropolitan area, the largest metropolitan area in the United States. This is a slight increase from the 18.92 million people that lived there in 2010.
Facebook
TwitterThis is a polygon dataset for county boundaries as well as for city, township and unorganized territory (CTU) boundaries in the Twin Cities 7-county metropolitan area. The linework for this dataset comes from individual counties and is assembled by the Metropolitan Council for the MetroGIS community. This is a MetroGIS Regionally Endorsed dataset https://metrogis.org/.
The County CTU Lookup Table here https://gisdata.mn.gov/dataset/us-mn-state-metc-bdry-counties-and-ctus-lookup
is also included in this dataset and contains various data related to cities, townships, unorganized territories (CTUs) and any divisions created by county boundaries splitting them is also included in the dataset.
This dataset is updated quarterly. This dataset is composed of three shape files and one dbf table.
- Counties.shp = county boundaries
- CTUs.shp = city, township and unorganized territory boundaries
- CountiesAndCTUs.shp = combined county and CTU boundaries
- CountyCTULookupTable.dbf = various data related to CTUs and any divisions created by county boundaries splitting them is also included in the dataset, described here: https://gisdata.mn.gov/dataset/us-mn-state-metc-bdry-counties-and-ctus-lookup
NOTES:
- On 3/17/2011 it was discovered that the CTU ID used for the City of Lake St. Croix Beach was incorrect. It was changed from 2394379 to 2395599 to match GNIS.
- On 3/17/2011 it was discovered that the CTU ID used for the City of Lilydale was incorrect. It was changed from 2394457 to 2395708 to match GNIS.
- On 11/9/2010 it was discovered that the CTU ID used for the City of Crystal was incorrect. It was changed from 2393541 to 2393683 to match GNIS.
- Effective April 2008, a change was made in GNIS to match the FIPS place codes to the "civil" feature for each city instead of the "populated place" feature. Both cities and townships are now "civil" features within GNIS. This means that the official GNIS unique ID for every city in Minnesota has changed.
- The five digit CTU codes in this dataset are identical to the Federal Information Processing Standard (FIPS) ''Place'' codes. They are also used by the Census Bureau and many other organizations and are proposed as a MN state data coding standard.
- Cities and townships have also been referred to as ''MCDs'' (a census term), however this term technically refers to the part of each city or township within a single county. Thus, a few cities in the metro area that are split by county boundaries are actually comprised of two different MCDs. This was part of the impetus for a proposed MN state data standard that uses the ''CTU'' terminology for clarity.
- The boundary line data for this dataset comes from each county.
- A variety of civil divisions of the land exist within the United States. In Minnesota, only three types exist - cities, townships and unorganized territories. All three of these exist within the Twin Cities seven county area. The only unorganized territory is Fort Snelling (a large portion of which is occupied by the MSP International Airport).
- Some cities are split between two counties. Only those parts of cities within the 7-county area are included.
- Prior to the 2000 census, the FIPS Place code for the City of Greenwood in Hennepin County was changed from 25928 to 25918. This dataset reflects that change.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan Divisions subdivide a Metropolitan Statistical Area containing a single core urban area that has a population of at least 2.5 million to form smaller groupings of counties or equivalent entities. Not all Metropolitan Statistical Areas with urban areas of this size will contain Metropolitan Divisions. Metropolitan Division are defined by the Office of Management and Budget (OMB) and consist of one or more main counties or equivalent entities that represent an employment center or centers, plus adjacent counties associated with the main county or counties through commuting ties. Because Metropolitan Divisions represent subdivisions of larger Metropolitan Statistical Areas, it is not appropriate to rank or compare Metropolitan Divisions with Metropolitan and Micropolitan Statistical Areas. The Metropolitan Divisions boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2017.
Facebook
TwitterThe datasets are split by census block, cities, counties, districts, provinces, and states. The typical dataset includes the below fields.
Column numbers, Data attribute, Description 1, device_id, hashed anonymized unique id per moving device 2, origin_geoid, geohash id of the origin grid cell 3, destination_geoid, geohash id of the destination grid cell 4, origin_lat, origin latitude with 4-to-5 decimal precision 5, origin_long, origin longitude with 4-to-5 decimal precision 6, destination_lat, destination latitude with 5-to-6 decimal precision 7, destination_lon, destination longitude with 5-to-6 decimal precision 8, start_timestamp, start timestamp / local time 9, end_timestamp, end timestamp / local time 10, origin_shape_zone, customer provided origin shape id, zone or census block id 11, destination_shape_zone, customer provided destination shape id, zone or census block id 12, trip_distance, inferred distance traveled in meters, as the crow flies 13, trip_duration, inferred duration of the trip in seconds 14, trip_speed, inferred speed of the trip in meters per second 15, hour_of_day, hour of day of trip start (0-23) 16, time_period, time period of trip start (morning, afternoon, evening, night) 17, day_of_week, day of week of trip start(mon, tue, wed, thu, fri, sat, sun) 18, year, year of trip start 19, iso_week, iso week of the trip 20, iso_week_start_date, start date of the iso week 21, iso_week_end_date, end date of the iso week 22, travel_mode, mode of travel (walking, driving, bicycling, etc) 23, trip_event, trip or segment events (start, route, end, start-end) 24, trip_id, trip identifier (unique for each batch of results) 25, origin_city_block_id, census block id for the trip origin point 26, destination_city_block_id, census block id for the trip destination point 27, origin_city_block_name, census block name for the trip origin point 28, destination_city_block_name, census block name for the trip destination point 29, trip_scaled_ratio, ratio used to scale up each trip, for example, a trip_scaled_ratio value of 10 means that 1 original trip was scaled up to 10 trips 30, route_geojson, geojson line representing trip route trajectory or geometry
The datasets can be processed and enhanced to also include places, POI visitation patterns, hour-of-day patterns, weekday patterns, weekend patterns, dwell time inferences, and macro movement trends.
The dataset is delivered as gzipped CSV archive files that are uploaded to your AWS s3 bucket upon request.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population in Largest City: as % of Urban Population data was reported at 7.020 % in 2017. This records a decrease from the previous number of 7.065 % for 2016. United States US: Population in Largest City: as % of Urban Population data is updated yearly, averaging 8.675 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 11.200 % in 1960 and a record low of 7.020 % in 2017. United States US: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population in Urban Agglomerations of More Than 1 Million: as % of Total Population data was reported at 45.896 % in 2017. This records an increase from the previous number of 45.666 % for 2016. United States US: Population in Urban Agglomerations of More Than 1 Million: as % of Total Population data is updated yearly, averaging 42.013 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 45.896 % in 2017 and a record low of 38.733 % in 1960. United States US: Population in Urban Agglomerations of More Than 1 Million: as % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population in urban agglomerations of more than one million is the percentage of a country's population living in metropolitan areas that in 2018 had a population of more than one million people.; ; United Nations, World Urbanization Prospects.; Weighted average;
Facebook
TwitterThis statistics shows the top 20 fastest growing large-metropolitan areas in the United States between July 1st, 2022 and July 1st, 2023. The total population in the Wilmington, North Carolina, metropolitan area increased by 0.05 percent from 2022 to 2023.
Facebook
TwitterThis statistic provides projected figures for the Gross Metropolitan Product (GMP) of the United States in 2021, by metropolitan area. Only the 100 leading metropolitan areas are shown here. In 2022, the GMP of the New York-Newark-Jersey City metro area is projected to be around of about **** trillion U.S. dollars. Los Angeles metropolitan areaA metropolitan area in the U.S. is characterized by a relatively high population density and close economic ties through the area, albeit, without the legal incorporation that is found within cities. The Gross Metropolitan Product is measured by the Bureau of Economic Analysis under the U.S. Department of Commerce and includes only metropolitan areas. The GMP of the Los Angeles-Long Beach-Anaheim metropolitan area located in California is projected to be among the highest in the United States in 2021, amounting to *** trillion U.S. dollars. The Houston-The Woodlands-Sugar Land, Texas metro area is estimated to be approximately *** billion U.S. dollars in the same year. The Los Angeles metro area had one of the largest populations in the country, totaling ****** million people in 2021. The Greater Los Angeles region has one of the largest economies in the world and is the U.S. headquarters of many international car manufacturers including Honda, Mazda, and Hyundai. Its entertainment industry has generated plenty of tourism and includes world famous beaches, shopping, motion picture studios, and amusement parks. The Hollywood district is known as the “movie capital of the U.S.” and has its historical roots in the country’s film industry. Its port, the Port of Los Angeles and the Port of Long Beach are aggregately one of the world’s busiest ports. The Port of Los Angelesgenerated some ****** million U.S. dollars in revenue in 2019.
Facebook
TwitterProvides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Computer code and data to replicate delineations described in "A Better Delineation of U.S. Metropolitan Areas'", Federal Reserve Bank of Kansas City Research Working Paper 25-01, May 2025. The paper is conditionally accepted for publication in the Journal of Urban Economics.
Facebook
TwitterThe Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.
The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.
Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.
Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.
Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.
For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.
To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.
Facebook
TwitterVITAL SIGNS INDICATOR Commute Time (T4)
FULL MEASURE NAME Commute time by employment location
LAST UPDATED April 2020
DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.
DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm
U.S. Census Bureau: American Community Survey Table B08536 (2018 only; by place of employment) Table B08601 (2018 only; by place of employment) www.api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.
For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.
Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents.
The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.
Facebook
TwitterBy Homeland Infrastructure Foundation [source]
The Urban Areas dataset provides comprehensive spatial and attribute data on urban areas in the United States. These urban areas represent densely developed territories consisting of residential, commercial, and other nonresidential land uses. The dataset includes geospatial information such as longitude and latitude coordinates, area measurements (land and water), shape length, and shape area for each urban area.
Each urban area is identified by a unique 5-character numeric census code, which distinguishes between two types of urban areas: urbanized areas (UAs) with populations of 50,000 or more people, and urban clusters (UCs) with populations ranging between 2,500 to 50,000 people (except in the U.S. Virgin Islands and Guam where some UCs have populations greater than 50,000).
Other important attributes provided include the functional status code indicating the functional classification of the urban area along with its name description. The land area measurement gives insight into the extent of developed territory in square meters for each urban area.
Furthermore, this dataset contains MAF/TIGER feature class codes that provide additional information about specific features within an urban area. These codes help in identifying various characteristics or components within an urban footprint.
By utilizing this dataset researchers can analyze different aspects related to population density patterns across various urbanscapes within the United States. This includes studying demographic trends as well as exploring correlations between land usage patterns - whether residential or commercial - in relation to geographical location.
Overall, this dataset serves as a valuable resource for conducting detailed spatial analysis on a wide range of topics related to population distribution and development across diverse metropolitan areas throughout the United States
1. Understanding the Urban Area Types
The dataset categorizes urban areas into two types: Urbanized Areas (UAs) and Urban Clusters (UCs). UAs are densely developed territories with populations of 50,000 or more people. UCs are also densely developed territories but have populations ranging from at least 2,500 people to fewer than 50,000 people.
2. Familiarize Yourself with Key Attributes
The dataset includes various attributes that provide valuable information about each urban area:
- NAME10: The name of the urban area.
- NAMELSAD10: The legal/statistical area description of the urban area.
- UACE10: A unique 5-character numeric census code that identifies each urban area.
- FUNCSTAT10: The functional status code for the urban area.
- ALAND10: The land area of the urban area in square meters.
- AWATER10: The water area of the urbareaan in square meters.
- INTPTLAT10: The latitude coordinate of an interior point within the geographic extent of an individual block group building footprint.(Numeric) -**INTPTLON150 longitude coordinate of an interior point within markset tabulation block group или Tract_LP tificatlpublic Land Survey System™ (PLSS)-based apices location
Understanding these attributes will allow you to gain insights into each specific type.
3. Analyzing Land and Water Area
By focusing on ALAND10 and AWATER10, you can explore the land and water areas of each urban area. This information could be valuable for understanding urban sprawl, planning infrastructure projects, or conducting environmental studies.
4. Exploring Functional Status
FUNCSTAT10 provides information about the functional status of an urban area. This attribute can help you identify whether an area serves as a single principal city or represents part of a larger metropolitan region.
5. Utilizing the Geographic Coordinates
INTPTLAT10 and INTPTLON10 provide latitude and longitude coordinates for each urban area's interior point. You can leverage this data to plot locations on maps
- Urban Planning Analysis: This dataset can be used for urban planning analysis, such as identifying the land area and water area of different urban areas. It can help city officials and planners understand the spatial distribution of urban areas, assess population density, and make informed decisions regarding infrastructure development and resource allocation.
- Market Research: The dataset can be utilized for market research purposes by identifying different types of urban areas (UAs or UCs) based on their po...
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Government: State Government in New York-Newark-Jersey City, NY-NJ (MSA) (SMU36356209092000001SA) from Jan 1990 to Aug 2025 about state govt, NJ, New York, PA, NY, government, employment, and USA.
Facebook
TwitterThe 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.