8 datasets found
  1. n

    Data from: MHCBN: A comprehensive database of MHC binding and non-binding...

    • neuinfo.org
    • rrid.site
    • +1more
    Updated Aug 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). MHCBN: A comprehensive database of MHC binding and non-binding peptides [Dataset]. http://identifiers.org/RRID:SCR_007785
    Explore at:
    Dataset updated
    Aug 17, 2025
    Description

    The MHCBN is a curated database consisting of detailed information about Major Histocompatibility Complex (MHC) Binding,Non-binding peptides and T-cell epitopes. The version 4.0 of database provides information about peptides interacting with TAP and MHC linked autoimmune diseases.

  2. f

    Number of binding/non-binding peptides in MHCBN benchmark dataset.

    • plos.figshare.com
    xls
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). Number of binding/non-binding peptides in MHCBN benchmark dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    UPDS refers to datasets of non-redundant peptides. The last three columns refer to similarity-reduced datasets (see text for details).

  3. f

    AUC values for the three methods evaluated on MHCBN-UPDS datasets.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for the three methods evaluated on MHCBN-UPDS datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t011
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For each dataset, the rank of each classifier is shown in parentheses.

  4. f

    AUC values for LA classifiers trained using MHCBN- UPDS, SRDS1, SRDS2,...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for LA classifiers trained using MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated on the blind test sets of Wang et al. [30]. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t018
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AUC values for LA classifiers trained using MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated on the blind test sets of Wang et al. [30].

  5. f

    AUC values for the three methods evaluated on MHCBN-SRDS2 datasets.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for the three methods evaluated on MHCBN-SRDS2 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t013
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For each dataset, the rank of each classifier is shown in parentheses.

  6. f

    AUC values for the three methods evaluated on MHCBN-SRDS1 datasets.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for the three methods evaluated on MHCBN-SRDS1 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t012
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For each dataset, the rank of each classifier is shown in parentheses.

  7. f

    AUC values for the three methods evaluated on MHCBN-SRDS3 datasets.

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for the three methods evaluated on MHCBN-SRDS3 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t014
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For each dataset, the rank of each classifier is shown in parentheses.

  8. f

    AUC values for CTD classifiers trained using MHCBN- UPDS, SRDS1, SRDS2,...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar (2023). AUC values for CTD classifiers trained using MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated on the blind test sets of Wang et al. [30]. [Dataset]. http://doi.org/10.1371/journal.pone.0003268.t017
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yasser EL-Manzalawy; Drena Dobbs; Vasant Honavar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AUC values for CTD classifiers trained using MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets and evaluated on the blind test sets of Wang et al. [30].

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). MHCBN: A comprehensive database of MHC binding and non-binding peptides [Dataset]. http://identifiers.org/RRID:SCR_007785

Data from: MHCBN: A comprehensive database of MHC binding and non-binding peptides

RRID:SCR_007785, nif-0000-03123, MHCBN: A comprehensive database of MHC binding and non-binding peptides (RRID:SCR_007785), MHCBN

Related Article
Explore at:
Dataset updated
Aug 17, 2025
Description

The MHCBN is a curated database consisting of detailed information about Major Histocompatibility Complex (MHC) Binding,Non-binding peptides and T-cell epitopes. The version 4.0 of database provides information about peptides interacting with TAP and MHC linked autoimmune diseases.

Search
Clear search
Close search
Google apps
Main menu