47 datasets found
  1. d

    A national dataset of rasterized building footprints for the U.S.

    • datasets.ai
    • s.cnmilf.com
    • +1more
    55
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). A national dataset of rasterized building footprints for the U.S. [Dataset]. https://datasets.ai/datasets/a-national-dataset-of-rasterized-building-footprints-for-the-u-s-c24bf
    Explore at:
    55Available download formats
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    United States
    Description

    The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30m cell size covering the 48 conterminous states, to better support incorporation of building footprint data into large-extent modelling. This Project is funded by NASA’s Biological Diversity and Ecological Forcasting program; Award # 80NSSC18k0341

  2. Microsoft Building Footprints

    • gis-calema.opendata.arcgis.com
    Updated Nov 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2018). Microsoft Building Footprints [Dataset]. https://gis-calema.opendata.arcgis.com/datasets/microsoft-building-footprints
    Explore at:
    Dataset updated
    Nov 19, 2018
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer is Microsoft's recently released, free, set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.The original AGOL Item was produced by ESRI and is located here.

  3. a

    Microsoft Building Footprints

    • hub.arcgis.com
    • gis-bradd-ky.opendata.arcgis.com
    Updated Oct 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2018). Microsoft Building Footprints [Dataset]. https://hub.arcgis.com/maps/1b595a6968be49249878fdc2bd9778ef
    Explore at:
    Dataset updated
    Oct 25, 2018
    Dataset authored and provided by
    U.S. Geological Survey
    Area covered
    Description

    Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.

  4. r

    Building Footprints

    • rigis.org
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2018). Building Footprints [Dataset]. https://www.rigis.org/datasets/building-footprints
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    Representative, computer generated building footprints for Rhode Island. Originally developed by Microsoft, these data were released by Microsoft as open source data in June 2018. Source date for these data is unknown, please see metadata for details.Original Microsoft announcement regarding availability of these data.

  5. n

    Building Footprint County Overview

    • data.gis.ny.gov
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2023). Building Footprint County Overview [Dataset]. https://data.gis.ny.gov/datasets/building-footprint-county-overview
    Explore at:
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    NYS Building Footprints - metadata info:The New York State building footprints service contains building footprints with address information. The footprints have address point information folded in from the Streets and Address Matching (SAM - https://gis.ny.gov/streets/) address point file. The building footprints have a field called “Address Range”, this field shows (where available) either a single address or an address range, depending on the address points that fall within the footprint. Ex: 3860 Atlantic Avenue or Ex: 32 - 34 Wheatfield Circle Building footprints in New York State are from four different sources: Microsoft, Open Data, New York State Energy Research and Development Authority (NYSERDA), and Geospatial Services. The majority of the footprints are from NYSERDA, except in NYC where the primary source was Open Data. Microsoft footprints were added where the other 2 sources were missing polygons. Field Descriptions: NYSGeo Source : tells the end user if the source is NYSERDA, Microsoft, NYC Open Data, and could expand from here in the futureAddress Point Count: the number of address points that fall within that building footprintAddress Range : If an address point falls within a footprint it lists the range of those address points. Ex: if a building is on a corner of South Pearl and Beaver Street, 40 points fall on the building, and 35 are South Pearl Street it would give the range of addresses for South Pearl. We also removed sub addresses from this range, primarily apartment related. For example, in above example, it would not list 30 South Pearl, Apartment 5A, it would list 30 South Pearl.Most Common Street : the street name of the largest number of address points. In the above example, it would list “South Pearl” as the most common street since the majority of address points list it as the street. Other Streets: the list of other streets that fall within the building footprint, if any. In the above example, “Beaver Street” would be listed since address points for Beaver Street fall on the footprint but are not in the majority.County Name : County name populated from CIESINs. If not populated from CIESINs, identified by the GSMunicipality Name : Municipality name populated from CIESINs. If not populated from CIESINs, identified by the GSSource: Source where the data came from. If NYSGeo Source = NYSERDA, the data would typically list orthoimagery, LIDAR, county data, etc.Source ID: if NYSGeo Source = NYSERDA, Source ID would typically list an orthoimage or LIDAR tileSource Date: Date the footprint was created. If the source image was from 2016 orthoimagery, 2016 would be the Source Date. Description of each footprint source:NYSERDA Building footprints that were created as part of the New York State Flood Impact Decision Support Systems https://fidss.ciesin.columbia.edu/home Footprints vary in age from county to county.Microsoft Building Footprints released 6/28/2018 - vintage unknown/varies. More info on this dataset can be found at https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data.NYC Open Data - Building Footprints of New York City as a polygon feature class. Last updated 7/30/2018, downloaded on 8/6/2018. Feature Class of footprint outlines of buildings in New York City. Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.mdSpatial Reference of Source Data: UTM Zone 18, meters, NAD 83. Spatial Reference of Web Service: Spatial Reference of Web Service: WGS 1984 Web Mercator Auxiliary Sphere.

  6. P

    BrowardCountyBuildingFootprints

    • data.pompanobeachfl.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Datasets (2021). BrowardCountyBuildingFootprints [Dataset]. https://data.pompanobeachfl.gov/dataset/browardcountybuildingfootprints
    Explore at:
    kml, zip, arcgis geoservices rest api, html, geojson, csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    BCGISData
    Authors
    External Datasets
    Description

    Polygons of the buildings footprints clipped Broward County. This is a product MicroSoft.

    The orginal dataset This dataset contains 125,192,184 computer generated building footprints in all 50 US states. This data is freely available for download and use.

    The data set was clipped to the Broward County developed boundary.

    https://github.com/microsoft/USBuildingFootprints/blob/master/README.md">Additional information

  7. Microsoft Buildings Footprint Training Data with Heights

    • cityscapes-projects-gisanddata.hub.arcgis.com
    Updated Feb 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Microsoft Buildings Footprint Training Data with Heights [Dataset]. https://cityscapes-projects-gisanddata.hub.arcgis.com/datasets/esri::microsoft-buildings-footprint-training-data-with-heights-
    Explore at:
    Dataset updated
    Feb 27, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. As part of that project Microsoft shared 8 million digitized building footprints with height information used for training the Deep Learning Algorithm. This map layer includes all buildings with height information for the original training set that can be used in scene viewer and ArcGIS pro to create simple 3D representations of buildings. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.Click see Microsoft Building Layers in ArcGIS Online.Digitized building footprint by State and City

    Alabama Greater Phoenix City, Mobile, and Montgomery

    Arizona Tucson

    Arkansas Little Rock with 5 buildings just across the river from Memphis

    California Bakersfield, Fresno, Modesto, Santa Barbara, Sacramento, Stockton, Calaveras County, San Fran & bay area south to San Jose and north to Cloverdale

    Colorado Interior of Denver

    Connecticut Enfield and Windsor Locks

    Delaware Dover

    Florida Tampa, Clearwater, St. Petersburg, Orlando, Daytona Beach, Jacksonville and Gainesville

    Georgia Columbus, Atlanta, and Augusta

    Illinois East St. Louis, downtown area, Springfield, Champaign and Urbana

    Indiana Indianapolis downtown and Jeffersonville downtown

    Iowa Des Moines

    Kansas Topeka

    Kentucky Louisville downtown, Covington and Newport

    Louisiana Shreveport, Baton Rouge and center of New Orleans

    Maine Augusta and Portland

    Maryland Baltimore

    Massachusetts Boston, South Attleboro, commercial area in Seekonk, and Springfield

    Michigan Downtown Detroit

    Minnesota Downtown Minneapolis

    Mississippi Biloxi and Gulfport

    Missouri Downtown St. Louis, Jefferson City and Springfield

    Nebraska Lincoln

    Nevada Carson City, Reno and Los Vegas

    New Hampshire Concord

    New Jersey Camden and downtown Jersey City

    New Mexico Albuquerque and Santa Fe

    New York Syracuse and Manhattan

    North Carolina Greensboro, Durham, and Raleigh

    North Dakota Bismarck

    Ohio Downtown Cleveland, downtown Cincinnati, and downtown Columbus

    Oklahoma Downtown Tulsa and downtown Oklahoma City

    Oregon Portland

    Pennsylvania Downtown Pittsburgh, Harrisburg, and Philadelphia

    Rhode Island The greater Providence area

    South Carolina Greensville, downtown Augsta, greater Columbia area and greater Charleston area

    South Dakota greater Pierre area

    Tennessee Memphis and Nashville

    Texas Lubbock, Longview, part of Fort Worth, Austin, downtown Houston, and Corpus Christi

    Utah Salt Lake City downtown

    Virginia Richmond

    Washington Greater Seattle area to Tacoma to the south and Marysville to the north

    Wisconsin Green Bay, downtown Milwaukee and Madison

    Wyoming Cheyenne

  8. TN Building Footprints

    • chattadata.org
    • data.chattlibrary.org
    Updated Feb 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2019). TN Building Footprints [Dataset]. https://www.chattadata.org/Buildings-Trails/TN-Building-Footprints/ww2h-472w
    Explore at:
    csv, xml, application/rdfxml, application/rssxml, tsv, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Feb 5, 2019
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Tamil Nadu
    Description

    Computer generated building footprints for the Tennessee. Comes out of the open source project by Microsoft to map all the buildings in the USA. More details can be found at https://github.com/Microsoft/USBuildingFootprints

  9. a

    Building Footprints Microsoft

    • gis-indianamap.opendata.arcgis.com
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap Open Data (ArcGIS Online) (2019). Building Footprints Microsoft [Dataset]. https://gis-indianamap.opendata.arcgis.com/datasets/building-footprints-microsoft
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    IndianaMap Open Data (ArcGIS Online)
    Area covered
    Description

    Building Footprints (Microsoft), 20190211 - Shows 3,268,325 building footprints in Indiana. It was produced from data originally created by Microsoft in June 2018 for all 50 U.S. states. Attribute fields showing building footprint perimeter length and area were added (software computed by Esri) by IGWS personnel after the conversion and reprojection of the Microsoft download file named "Indiana.GeoJSON" to an Esri polygon feature class. It was created to provide access to Microsoft's building footprints for Indiana in an Esri GIS file format (file geodatabase).Download Esri File Geodatabase: Building_Footprints_Microsoft.ZIPAccess FGDC metadata: Building_Footprints_Microsoft.HTML or XMLThe following is excerpted from Microsoft's GitHub "USBuildingFootprints" Web page: "Our metrics show that in the vast majority of cases the quality is at least as good as data hand digitized buildings in OpenStreetMap. It is not perfect, particularly in dense urban areas but it is still awesome. The vintage of the footprints depends on the vintage of the underlying imagery. Because Bing Imagery is a composite of multiple sources it is difficult to know the exact dates for individual pieces of data. While our metrics show that this data meets or exceeds the quality of hand drawn building footprints, the data does vary in quality from place to place, between rural and urban, mountains and plains, and so on. Inspect quality locally and discuss an import plan with the community."

  10. e

    DBSM R2023 - Individual building footprints for EU27 from the hierarchical...

    • data.europa.eu
    binary data
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2024). DBSM R2023 - Individual building footprints for EU27 from the hierarchical conflation of OSM, Microsoft Buildings and ESM R2020 [Dataset]. https://data.europa.eu/data/datasets/60c6b14d-3dda-4034-b461-390dc8ed8665?locale=pl
    Explore at:
    binary dataAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    Joint Research Centre
    License

    https://spdx.org/licenses/ODbL-1.0.htmlhttps://spdx.org/licenses/ODbL-1.0.html

    Description

    This vector dataset contains information about individual building footprints covering all countries of the European Union (EU27). This is the result of conflating the building footprint polygons available in three datasets, and in the following order of priority: OpenStreetMap, Microsoft GlobalML Building Footprints and European Settlement Map.

    Results indicate how DBSM R2023 compares robustly agains cadastral data from Estonia, used as reference area.

    The comparison with GHS-BUILT-S, reveals a relative overestimation of the latter, factored by 0.68 at the EU scale for a sound match. While this dataset only contains the polygon of the building footprint, the aim is to continue to add relevant attributes from the point of view of energy efficiency and energy consumption in building in future versions.

  11. o

    Building Footprints

    • geohub.oregon.gov
    • data.oregon.gov
    • +4more
    Updated Jan 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). Building Footprints [Dataset]. https://geohub.oregon.gov/datasets/oregon-geo::building-footprints
    Explore at:
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    State of Oregon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This feature class is a compliation GIS dataset that contains building footprints depicting building shape and location in the state of Oregon. All contributing datasets were compiled into the stateside dataset. Static datasets or infrequently maintained datasets were reviewed for quality. New building footprint data were reviewed and digitized from 2017 and 2018 imagery accessed from the Oregon Statewide Imagery Program.

  12. m

    Maryland Building Footprints

    • data.imap.maryland.gov
    • hub.arcgis.com
    Updated Aug 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2018). Maryland Building Footprints [Dataset]. https://data.imap.maryland.gov/datasets/maryland-building-footprints/about
    Explore at:
    Dataset updated
    Aug 1, 2018
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    Computer generated buiilding footprints for Maryland. The methodology for the generation of the building footprints can be found at: https://github.com/Microsoft/USBuildingFootprints. These building footprints should be used a reference only and the geometries are not considered accurate enough to provide detailed estimates related to their location, area, or associated attributes.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Map Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_BuildingFootprints/MapServer

  13. n

    ramp Building Footprint Dataset - Mesopotamia, St. Vincent

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Mesopotamia, St. Vincent [Dataset]. http://doi.org/10.34911/rdnt.yhk0md
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Mesopotamia and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,013 tiles and 33,139 individual buildings. The satellite imagery resolution is 40 cm and was sourced from Maxar ODP (10500100236CC900). Dataset keywords: Coastal, Urban, Peri-urban.

  14. n

    ramp Building Footprint Dataset - Wa, Ghana

    • access.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Wa, Ghana [Dataset]. http://doi.org/10.34911/rdnt.6l9q5d
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Wa and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 7,615 tiles and 68,072 individual buildings. The satellite imagery resolution is 32 cm and was sourced from Maxar ODP (1040010056B6FA00). Dataset keywords: Urban, Peri-urban

  15. n

    ramp Building Footprint Dataset - Les Cayes, Haiti

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Les Cayes, Haiti [Dataset]. http://doi.org/10.34911/rdnt.lkskd8
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Les Cayes and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 1,430 tiles and 28,549 individual buildings. The satellite imagery resolution is 47 cm and was sourced from Maxar ODP (10300100A450A500). Dataset keywords: Urban, Peri-Urban, Rural, Coastal, Mountainous.

  16. a

    Columbia County Building Footprints

    • hub.arcgis.com
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia County Planning (2024). Columbia County Building Footprints [Dataset]. https://hub.arcgis.com/datasets/c4fd805873cf497b90edc4452f3e3b38
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset authored and provided by
    Columbia County Planning
    Area covered
    Description

    Updated building footprint data for Columbia County NY.The New York State building footprints service contains building footprints with address information. The footprints have address point information folded in from the Streets and Address Matching (SAM - https://gis.ny.gov/streets/) address point file. The building footprints have a field called “Address Range”, this field shows (where available) either a single address or an address range, depending on the address points that fall within the footprint. Ex: 3860 Atlantic Avenue or Ex: 32 - 34 Wheatfield Circle.Building footprints in New York State are from four different sources: Microsoft, Open Data, New York State Energy Research and Development Authority (NYSERDA), and Geospatial Services. The majority of the footprints are from NYSERDA, except in NYC where the primary source was Open Data. Microsoft footprints were added where the other 2 sources were missing polygons.Field Descriptions:NYSGeo Source: tells the end user if the source is NYSERDA, Microsoft, NYC Open Data, and could expand from here in the future.Address Point Count: the number of address points that fall within that building footprint.Address Range : If an address point falls within a footprint it lists the range of those address points. Ex: if a building is on a corner of South Pearl and Beaver Street, 40 points fall on the building, and 35 are South Pearl Street it would give the range of addresses for South Pearl. We also removed sub addresses from this range, primarily apartment related. For example, in above example, it would not list 30 South Pearl, Apartment 5A, it would list 30 South Pearl.Most Common Street: the street name of the largest number of address points. In the above example, it would list “South Pearl” as the most common street since the majority of address points list it as the street.Other Streets: the list of other streets that fall within the building footprint, if any. In the above example, “Beaver Street” would be listed since address points for Beaver Street fall on the footprint but are not in the majority.County Name: County name populated from CIESINs. If not populated from CIESINs, identified by the GS.Municipality Name: Municipality name populated from CIESINs. If not populated from CIESINs, identified by the GS.Source: Source where the data came from. If NYSGeo Source = NYSERDA, the data would typically list orthoimagery, LIDAR, county data, etc.Source ID: if NYSGeo Source = NYSERDA, Source ID would typically list an orthoimage or LIDAR tile.Source Date: Date the footprint was created. If the source image was from 2016 orthoimagery, 2016 would be the Source Date.Description of each footprint source: NYSERDA Building footprints that were created as part of the New York State Flood Impact Decision Support Systems https://fidss.ciesin.columbia.edu/home Footprints vary in age from county to county. Microsoft Building Footprints released 6/28/2018 - vintage unknown/varies.More info on this dataset can be found at https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data.NYC Open Data - Building Footprints of New York City as a polygon feature class. Last updated 7/30/2018, downloaded on 8/6/2018.Feature Class of footprint outlines of buildings in New York City.Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.md

  17. n

    ramp Building Footprint Dataset - Paris, France

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Paris, France [Dataset]. http://doi.org/10.34911/rdnt.t86thc
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Paris and includes 30cm high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 or smaller pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 1,027 tiles and 3,468 buildings. The original dataset was sourced from the SpaceNet 2 Dataset before the imagery was tiled down from 650x650 pixel chips and labels were revised to be consistent with the ramp datasets notion of rooftop as the building footprint. Dataset keywords: Urban, Dense.

  18. f

    UNESCO Cultural Heritage 3D Building Dataset

    • figshare.com
    zip
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yajing Wu (2025). UNESCO Cultural Heritage 3D Building Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28912334.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    figshare
    Authors
    Yajing Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Building footprint and height data were obtained from the latest global 3D building database. The building footprint data originated from Microsoft and Google datasets. Building height information was estimated using an XGBoost machine learning regression model that integrates multi-source remote sensing features. The height estimation model was trained using datasets from ONEGEO Map, Microsoft, Baidu, and EMU Analytics, utilizing 2020 data for the final estimations. Validation of this database demonstrates that the height estimation models perform exceptionally well at a global scale across both the Northern and Southern Hemispheres. The estimated heights closely match reference height data, especially for landmark buildings, showcasing superior accuracy compared to other global height products. The 3D building data that support this dataset are available in Zenodo DOI:10.5194/essd-16-5357-2024 (Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., and Dai, Y. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth System Science Data)Based on the 3D building database, we verify the locations and boundaries of individual cultural heritage sites and their buffer zones using UNESCO's heritage map platform (https://whc.unesco.org/), and categorize heritage into three groups for data extraction:Broad Scale Sites: For sites encompassing continuous building clusters or portions of cities (e.g., City of Bath), we extract buildings within the designated buffer zones provided by the UNESCO platform.Single Building Sites: For individual monuments or structures (e.g., Tower of London), we precisely extract the building footprints based on their exact coordinates.Multiple Dispersed Buildings: For sites consisting of multiple, non-contiguous structures (e.g., Wooden Churches of Southern Małopolska, Poland), we identify each location using the platform’s data and verify them through Google Maps before extracting the relevant buildings.A few linear heritage sites, such as extensive archaeological routes spanning over a thousand kilometers, are excluded due to the complexities associated with their vast spatial extent and the variability of climate conditions across different segments.The effective data coverage varies across continents: Europe and North America have an effective rate of 82.5%, Asia and the Pacific 68.3%, Latin America and the Caribbean 75.7%, Arab States 76.5%, and Africa 49.2%. This variability reflects differences in data availability. In less developed regions, remote sensing data tends to overlook non-urban heritage sites, and soil and rock structures common in Africa and Southeast Asia are more difficult to detect using satellite remote sensing techniques, leading to lower effective data coverage in these regions.

  19. f

    US Building height

    • figshare.com
    application/x-rar
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzi Che (2025). US Building height [Dataset]. http://doi.org/10.6084/m9.figshare.21196186.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    figshare
    Authors
    Yangzi Che
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The three-dimensional (3-D) information (i.e., heights) of buildings, in addition to their footprints, is of great importance to a variety of urban studies. This dataset is the first estimated height of each individual building (2020) in the conterminous United States (US) using multi-source remotely sensed observations and the Microsoft open-access building footprint data. The derived building height dataset shows a good agreement with the reference building height data in the conterminous US (i.e., R-square = 0.82, RMSE = 3.30m). This dataset is in shapefile format with building height in attribute tables. The three-dimensional building height dataset reveals spatial variations of urban form at a large scale, deepening our understanding of complex interactions between human society and natural systems.

  20. n

    ramp Building Footprint Dataset - Mzuzu, Malawi

    • access.earthdata.nasa.gov
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ramp Building Footprint Dataset - Mzuzu, Malawi [Dataset]. http://doi.org/10.34911/rdnt.824213
    Explore at:
    Dataset updated
    Oct 10, 2023
    Time period covered
    Jan 1, 2020 - Jan 1, 2023
    Area covered
    Description

    This chipped training dataset is over Mzuzu and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,357 tiles and 91,391 individual buildings. The satellite imagery resolution is 45 cm and was sourced from Maxar ODP (10500100195A6700). Dataset keywords: Urban, Peri-Urban, Dense.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of the Interior (2024). A national dataset of rasterized building footprints for the U.S. [Dataset]. https://datasets.ai/datasets/a-national-dataset-of-rasterized-building-footprints-for-the-u-s-c24bf

A national dataset of rasterized building footprints for the U.S.

Explore at:
55Available download formats
Dataset updated
Sep 9, 2024
Dataset authored and provided by
Department of the Interior
Area covered
United States
Description

The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30m cell size covering the 48 conterminous states, to better support incorporation of building footprint data into large-extent modelling. This Project is funded by NASA’s Biological Diversity and Ecological Forcasting program; Award # 80NSSC18k0341

Search
Clear search
Close search
Google apps
Main menu