U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values a ...
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer is Microsoft's recently released, free, set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.The original AGOL Item was produced by ESRI and is located here.
Bing Maps is releasing open building footprints around the world. We have detected 1.3B buildings from Bing Maps imagery between 2014 and 2024 including Maxar, Airbus, and IGN France imagery. The data is freely available for download and use under ODbL.Source: https://github.com/microsoft/GlobalMLBuildingFootprintsFile Geodatabase for download
The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30m cell size covering the 48 conterminous states, to better support incorporation of building footprint data into large-extent modelling. This Project is funded by NASA’s Biological Diversity and Ecological Forcasting program; Award # 80NSSC18k0341
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
From: MS BuildingsMicrosoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. As part of that project Microsoft shared 8 million digitized building footprints with height information used for training the Deep Learning Algorithm. This map layer includes all buildings with height information for the original training set that can be used in scene viewer and ArcGIS pro to create simple 3D representations of buildings. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.Click see Microsoft Building Layers in ArcGIS Online.Digitized building footprint by State and City
Alabama Greater Phoenix City, Mobile, and Montgomery
Arizona Tucson
Arkansas Little Rock with 5 buildings just across the river from Memphis
California Bakersfield, Fresno, Modesto, Santa Barbara, Sacramento, Stockton, Calaveras County, San Fran & bay area south to San Jose and north to Cloverdale
Colorado Interior of Denver
Connecticut Enfield and Windsor Locks
Delaware Dover
Florida Tampa, Clearwater, St. Petersburg, Orlando, Daytona Beach, Jacksonville and Gainesville
Georgia Columbus, Atlanta, and Augusta
Illinois East St. Louis, downtown area, Springfield, Champaign and Urbana
Indiana Indianapolis downtown and Jeffersonville downtown
Iowa Des Moines
Kansas Topeka
Kentucky Louisville downtown, Covington and Newport
Louisiana Shreveport, Baton Rouge and center of New Orleans
Maine Augusta and Portland
Maryland Baltimore
Massachusetts Boston, South Attleboro, commercial area in Seekonk, and Springfield
Michigan Downtown Detroit
Minnesota Downtown Minneapolis
Mississippi Biloxi and Gulfport
Missouri Downtown St. Louis, Jefferson City and Springfield
Nebraska Lincoln
Nevada Carson City, Reno and Los Vegas
New Hampshire Concord
New Jersey Camden and downtown Jersey City
New Mexico Albuquerque and Santa Fe
New York Syracuse and Manhattan
North Carolina Greensboro, Durham, and Raleigh
North Dakota Bismarck
Ohio Downtown Cleveland, downtown Cincinnati, and downtown Columbus
Oklahoma Downtown Tulsa and downtown Oklahoma City
Oregon Portland
Pennsylvania Downtown Pittsburgh, Harrisburg, and Philadelphia
Rhode Island The greater Providence area
South Carolina Greensville, downtown Augsta, greater Columbia area and greater Charleston area
South Dakota greater Pierre area
Tennessee Memphis and Nashville
Texas Lubbock, Longview, part of Fort Worth, Austin, downtown Houston, and Corpus Christi
Utah Salt Lake City downtown
Virginia Richmond
Washington Greater Seattle area to Tacoma to the south and Marysville to the north
Wisconsin Green Bay, downtown Milwaukee and Madison
Wyoming Cheyenne
Polygons of the buildings footprints clipped Broward County. This is a product MicroSoft.
The orginal dataset This dataset contains 125,192,184 computer generated building footprints in all 50 US states. This data is freely available for download and use.
The data set was clipped to the Broward County developed boundary.
https://github.com/microsoft/USBuildingFootprints/blob/master/README.md">Additional information
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Computer generated building footprints for the Tennessee. Comes out of the open source project by Microsoft to map all the buildings in the USA. More details can be found at https://github.com/Microsoft/USBuildingFootprints
https://spdx.org/licenses/ODbL-1.0.htmlhttps://spdx.org/licenses/ODbL-1.0.html
This vector dataset contains information about individual building footprints covering all countries of the European Union (EU27). This is the result of conflating the building footprint polygons available in three datasets, and in the following order of priority: OpenStreetMap, Microsoft GlobalML Building Footprints and European Settlement Map.
Results indicate how DBSM R2023 compares robustly agains cadastral data from Estonia, used as reference area.
The comparison with GHS-BUILT-S, reveals a relative overestimation of the latter, factored by 0.68 at the EU scale for a sound match. While this dataset only contains the polygon of the building footprint, the aim is to continue to add relevant attributes from the point of view of energy efficiency and energy consumption in building in future versions.
SGID10.LOCATION.Buildings was derived from building footprints generated by Microsoft for all 50 States https://github.com/Microsoft/USBuildingFootprints In some cases the pixel prediction algorithm used by Microsoft identified and created building footprints where no buildings existed. To flag potential errors, building footprints within 750 meters of known populated areas (SGID10.DEMOGRAPHIC.PopBlockAreas2010_Approx) and within 500 meters of an address point (SGID10.LOCATION.AddressPoints) were selected and indentified as being a likely structure, footprints falling outside these areas were identified as possible buildings in the 'TYPE' field. In addition, attributes were added for address, city, county, and zip where possible.
Computer generated buiilding footprints for Maryland. The methodology for the generation of the building footprints can be found at: https://github.com/Microsoft/USBuildingFootprints. These building footprints should be used a reference only and the geometries are not considered accurate enough to provide detailed estimates related to their location, area, or associated attributes.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Map Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_BuildingFootprints/MapServer
Building Footprints (Microsoft), 20190211 - Shows 3,268,325 building footprints in Indiana. It was produced from data originally created by Microsoft in June 2018 for all 50 U.S. states. Attribute fields showing building footprint perimeter length and area were added (software computed by Esri) by IGWS personnel after the conversion and reprojection of the Microsoft download file named "Indiana.GeoJSON" to an Esri polygon feature class. It was created to provide access to Microsoft's building footprints for Indiana in an Esri GIS file format (file geodatabase).Download Esri File Geodatabase: Building_Footprints_Microsoft.ZIPAccess FGDC metadata: Building_Footprints_Microsoft.HTML or XMLThe following is excerpted from Microsoft's GitHub "USBuildingFootprints" Web page: "Our metrics show that in the vast majority of cases the quality is at least as good as data hand digitized buildings in OpenStreetMap. It is not perfect, particularly in dense urban areas but it is still awesome. The vintage of the footprints depends on the vintage of the underlying imagery. Because Bing Imagery is a composite of multiple sources it is difficult to know the exact dates for individual pieces of data. While our metrics show that this data meets or exceeds the quality of hand drawn building footprints, the data does vary in quality from place to place, between rural and urban, mountains and plains, and so on. Inspect quality locally and discuss an import plan with the community."
This chipped training dataset is over Mesopotamia and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,013 tiles and 33,139 individual buildings. The satellite imagery resolution is 40 cm and was sourced from Maxar ODP (10500100236CC900). Dataset keywords: Coastal, Urban, Peri-urban.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.
Representative, computer generated building footprints for Rhode Island. Originally developed by Microsoft, these data were released by Microsoft as open source data in June 2018. Source date for these data is unknown, please see metadata for details.Original Microsoft announcement regarding availability of these data.
This chipped training dataset is over Wa and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 7,615 tiles and 68,072 individual buildings. The satellite imagery resolution is 32 cm and was sourced from Maxar ODP (1040010056B6FA00). Dataset keywords: Urban, Peri-urban
A raster dataset containing building footprints of California. The vintage of the footprints depends on the vintage of the underlying imagery. Bing Imagery is a composite of multiple sources with different capture dates. Vector spatial data called US Building Footprints contained in a Microsoft dataset (available at https://github.com/microsoft/USBuildingFootprints) downloaded, clipped to California and converted to a 10m raster.
This chipped training dataset is over Hpa-an and includes high-resolution imagery (.tif format) and corresponding building footprint vector labels (.geojson format) in 256 x 256 pixel tile/label pairs. This dataset is a ramp Tier 1 dataset, meaning it has been thoroughly reviewed and improved. This dataset was used in developing the ramp baseline model and contains 3,667 tiles and 44,765 individual buildings. The satellite imagery resolution is 35 cm and was sourced from Maxar ODP (1040010033320500). Dataset keywords: Urban, Peri-Urban, River.
Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The three-dimensional (3-D) information (i.e., heights) of buildings, in addition to their footprints, is of great importance to a variety of urban studies. This dataset is the first estimated height of each individual building (2020) in the conterminous United States (US) using multi-source remotely sensed observations and the Microsoft open-access building footprint data. The derived building height dataset shows a good agreement with the reference building height data in the conterminous US (i.e., R-square = 0.82, RMSE = 3.30m). This dataset is in shapefile format with building height in attribute tables. The three-dimensional building height dataset reveals spatial variations of urban form at a large scale, deepening our understanding of complex interactions between human society and natural systems.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values a ...