100+ datasets found
  1. p

    MIMIC-III Clinical Database

    • physionet.org
    Updated Sep 4, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alistair Johnson; Tom Pollard; Roger Mark (2016). MIMIC-III Clinical Database [Dataset]. http://doi.org/10.13026/C2XW26
    Explore at:
    Dataset updated
    Sep 4, 2016
    Authors
    Alistair Johnson; Tom Pollard; Roger Mark
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    MIMIC-III is a large, freely-available database comprising deidentified health-related data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes information such as demographics, vital sign measurements made at the bedside (~1 data point per hour), laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality (including post-hospital discharge).MIMIC supports a diverse range of analytic studies spanning epidemiology, clinical decision-rule improvement, and electronic tool development. It is notable for three factors: it is freely available to researchers worldwide; it encompasses a diverse and very large population of ICU patients; and it contains highly granular data, including vital signs, laboratory results, and medications.

  2. o

    MIMIC-IV Clinical Database Demo

    • registry.opendata.aws
    • physionet.org
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PhysioNet (2024). MIMIC-IV Clinical Database Demo [Dataset]. https://registry.opendata.aws/mimic-iv-demo/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    <a href="https://physionet.org/">PhysioNet</a>
    Description

    The Medical Information Mart for Intensive Care (MIMIC)-IV database is comprised of deidentified electronic health records for patients admitted to the Beth Israel Deaconess Medical Center. Access to MIMIC-IV is limited to credentialed users. Here, we have provided an openly-available demo of MIMIC-IV containing a subset of 100 patients. The dataset includes similar content to MIMIC-IV, but excludes free-text clinical notes. The demo may be useful for running workshops and for assessing whether the MIMIC-IV is appropriate for a study before making an access request.

  3. p

    MIMIC-II Clinical Database

    • physionet.org
    Updated Apr 24, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Saeed; Mauricio Villarroel; Andrew Reisner; Gari Clifford; Li-wei Lehman; George Moody; Thomas Heldt; Tin Kyaw; Benjamin Moody; Roger Mark (2011). MIMIC-II Clinical Database [Dataset]. http://doi.org/10.13026/fxn0-mk84
    Explore at:
    Dataset updated
    Apr 24, 2011
    Authors
    Mohammed Saeed; Mauricio Villarroel; Andrew Reisner; Gari Clifford; Li-wei Lehman; George Moody; Thomas Heldt; Tin Kyaw; Benjamin Moody; Roger Mark
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    MIMIC-II documents a diverse and large population of intensive care unit patient stays and contains comprehensive and detailed clinical data, including physiological waveforms and minute-by-minute trends for a subset of records. It establishes a unique public-access resource for critical care research, supporting a diverse range of analytic studies spanning epidemiology, clinical decision-rule development, and electronic tool development. The MIMIC-II Clinical Database, although de-identified, still contains detailed information regarding the clinical care of patients, and must be treated with appropriate care and respect.

  4. MIMIC-III Clinical Database(Open Access)

    • kaggle.com
    Updated Jun 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ihssane Ned (2025). MIMIC-III Clinical Database(Open Access) [Dataset]. https://www.kaggle.com/datasets/ihssanened/mimic-iii-clinical-databaseopen-access/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ihssane Ned
    Description

    Dataset Source

    This dataset is a portion of MIMIC-III Clinical Database, a large, freely-available database comprising deidentified health-related data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. The MIMIC-III demo provides researchers with an opportunity to review the structure and content of MIMIC-III before deciding whether or not to carry out an analysis on the full dataset. The full dataset is available on PhysioNet this** link**

    Dataset Description:

    This dataset contains solely 4 tables (extracted from the original dataset), more informations about each table can be found in its corresponding link - admissions.csv
    - d_labitems.csv - labevents.csv - patient.csv a nice visualization of this dataset can be found here

    Future Perspectives:

    This portion of the dataset will be combined to build a comprehensive dataset of simulated medical reports.

  5. p

    MIMIC-III Clinical Database CareVue subset

    • physionet.org
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alistair Johnson; Tom Pollard; Roger Mark (2022). MIMIC-III Clinical Database CareVue subset [Dataset]. http://doi.org/10.13026/8a4q-w170
    Explore at:
    Dataset updated
    Sep 21, 2022
    Authors
    Alistair Johnson; Tom Pollard; Roger Mark
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    MIMIC-III is a database of critically ill patients admitted to an intensive care unit (ICU) at the Beth Israel Deaconess Medical Center (BIDMC) in Boston, MA. MIMIC-III has seen broad use, and was updated with the release of MIMIC-IV. MIMIC-IV contains more contemporaneous stays, higher granularity data, and expanded domains of information. To maximize the sample size of MIMIC-IV, the database overlaps with MIMIC-III, and specifically both databases contain the same admissions which occurred between 2008 - 2012. This overlap complicates analyses of the two databases simultaneously. Here we provide a subset of MIMIC-III containing patients who are not in MIMIC-IV. The goal of this project is to simplify the combination of MIMIC-III with MIMIC-IV.

  6. p

    MIMIC-III Waveform Database

    • physionet.org
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Moody; George Moody; Mauricio Villarroel; Gari D. Clifford; Ikaro Silva (2020). MIMIC-III Waveform Database [Dataset]. http://doi.org/10.13026/c2607m
    Explore at:
    Dataset updated
    Apr 7, 2020
    Authors
    Benjamin Moody; George Moody; Mauricio Villarroel; Gari D. Clifford; Ikaro Silva
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The MIMIC-III Waveform Database contains 67,830 record sets for approximately 30,000 ICU patients. Almost all record sets include a waveform record containing digitized signals (typically including ECG, ABP, respiration, and PPG, and frequently other signals) and a “numerics” record containing time series of periodic measurements, each presenting a quasi-continuous recording of vital signs of a single patient throughout an ICU stay (typically a few days, but many are several weeks in duration). A subset of this database contains waveform and numerics records that have been matched and time-aligned with MIMIC-III Clinical Database records.

  7. o

    Data from: MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset

    • registry.opendata.aws
    • physionet.org
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PhysioNet (2024). MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset [Dataset]. https://registry.opendata.aws/mimic-iv-ecg/
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    <a href="https://physionet.org/">PhysioNet</a>
    Description

    The MIMIC-IV-ECG module contains approximately 800,000 diagnostic electrocardiograms across nearly 160,000 unique patients. These diagnostic ECGs use 12 leads and are 10 seconds in length. They are sampled at 500 Hz. This subset contains all of the ECGs for patients who appear in the MIMIC-IV Clinical Database. When a cardiologist report is available for a given ECG, we provide the needed information to link the waveform to the report. The patients in MIMIC-IV-ECG have been matched against the MIMIC-IV Clinical Database, making it possible to link to information across the MIMIC-IV modules.

  8. S

    EHR data from MIMIC-III

    • scidb.cn
    Updated Aug 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tingyi Wanyan; Hossein Honarvar; Ariful Azad; Ying Ding; Benjamin S. Glicksberg (2021). EHR data from MIMIC-III [Dataset]. http://doi.org/10.11922/sciencedb.j00104.00094
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 24, 2021
    Dataset provided by
    Science Data Bank
    Authors
    Tingyi Wanyan; Hossein Honarvar; Ariful Azad; Ying Ding; Benjamin S. Glicksberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We conducted our experiments on de-identified EHR data from MIMIC-III. This data set contains various clinical data relating to patient admission to ICU, such as disease diagnoses in the form of International Classification of Diseases (ICD)-9 codes, and lab test results as detailed in Supplementary Materials. We collected data for 5,956 patients, extracting lab tests every hour from admission. There are a total of 409 unique lab tests and 3,387 unique disease diagnoses observed. The diagnoses were obtained as ICD-9 codes and they were represented using one-hot encoding where one represents patients with disease and zero indicates those without. We binned the lab test events into 6, 12, 24, and 48 hours prior to patient death or discharge from ICU. From these data, we performed mortality predictions that are 10-fold, cross validated.

  9. ECG_sepsis.xlsx

    • figshare.com
    xlsx
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MERVE APALAK (2023). ECG_sepsis.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.24265717.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    MERVE APALAK
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database is created to enable community-based sepsis detection research. It is a subset of MIMIC-III Waveform Database Matched Subset. Sepsis onset is calculated based on Sepsis-3 criteria. Total of 447 patients are included. Further details can be found in our research paper or description file.If you use the annotations, please cite the following paper:..Details about MIMIC III matched subset can be found at Physionet.https://physionet.org/content/mimic3wdb-matched/1.0/

  10. f

    Data Sheet 1_Association between statin administration and Clostridium...

    • frontiersin.figshare.com
    docx
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Renli Wang; Rongjun Liu; Hua Wang; Zhaojun Xu (2025). Data Sheet 1_Association between statin administration and Clostridium difficile-induced enteritis: a retrospective analysis of the MIMIC-IV database.docx [Dataset]. http://doi.org/10.3389/fphar.2025.1550378.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    Frontiers
    Authors
    Renli Wang; Rongjun Liu; Hua Wang; Zhaojun Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundExisting research suggests that using statins may reduce the incidence of enteritis caused by C. difficile and improve the prognosis of patients. This study aimed to explore the relation between Clostridium difficile-induced enteritis (CDE) and statin use.MethodsData were collected from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Multivariate logistic regression analysis was employed to assess the impact of statin use on CDE incidence in patients in intensive care units (ICUs) and its effect on in-hospital mortality among them. The research findings were validated by performing propensity score matching (PSM), inverse probability of treatment weighting (IPTW), and subgroup analyses.ResultsThe study enrolled the data of 51,978 individuals to assess the effect of statin usage on the occurrence of CDE in patients admitted to the ICU. The results indicate that statins can decrease the prevalence of CDE in patients in ICU (odds ratio (OR): 0.758, 95% confidence interval (CI): 0.666–0.873, P < 0.05), which was further confirmed through PSM (OR: 0.760, 95% CI: 0.661–0.873, P < 0.05) and IPTW (OR: 0.818, 95% CI: 0.754–0.888, P < 0.05) analyses. For most subgroups, statins’ favorable effect in reducing CDE remained constant. A total of 1,208 patients were included in the study to evaluate whether statins could lower the risk of death in patients in ICU with enteritis caused by C. difficile. Statins did not reduce in-hospital mortality of patients in ICU with CDE (OR: 0.911, 95% CI: 0.667–1.235, P = 0.553). The results were validated following PSM (OR: 0.877, 95% CI: 0.599–1.282, P = 0.499) and IPTW (OR: 0.781, 95% CI: 0.632–1.062, P = 0.071) analyses, and all subgroups demonstrated consistent results.ConclusionStatin administration can reduce the incidence of CDE in patients in the ICU; however, it does not decrease the in-hospital mortality rate for individuals with CDE.

  11. h

    MIMIC-III-Clinical-Database

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Truong-Phuc Nguyen, MIMIC-III-Clinical-Database [Dataset]. https://huggingface.co/datasets/ntphuc149/MIMIC-III-Clinical-Database
    Explore at:
    Authors
    Truong-Phuc Nguyen
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ntphuc149/MIMIC-III-Clinical-Database dataset hosted on Hugging Face and contributed by the HF Datasets community

  12. d

    MIMIC II

    • dknet.org
    • scicrunch.org
    • +1more
    Updated Aug 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). MIMIC II [Dataset]. http://identifiers.org/RRID:SCR_013237
    Explore at:
    Dataset updated
    Aug 17, 2025
    Description

    MIMIC II (Multiparameter Intelligent Monitoring in Intensive Care) Database contains comprehensive clinical data from tens of thousands of Intensive Care Unit (ICU) patients. Data were collected between 2001 and 2008 from a variety of ICUs (medical, surgical, coronary care, and neonatal) in a single tertiary teaching hospital. The database contains clinical data from bedside workstations as well as hospital archives. The database also includes thousands of records of continuous high-resolution physiologic waveforms and minute-by-minute numeric time series (trends) of physiologic measurements.

  13. p

    Data from: MIMIC-IV-ED

    • physionet.org
    Updated Jan 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alistair Johnson; Lucas Bulgarelli; Tom Pollard; Leo Anthony Celi; Roger Mark; Steven Horng (2023). MIMIC-IV-ED [Dataset]. http://doi.org/10.13026/5ntk-km72
    Explore at:
    Dataset updated
    Jan 5, 2023
    Authors
    Alistair Johnson; Lucas Bulgarelli; Tom Pollard; Leo Anthony Celi; Roger Mark; Steven Horng
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    MIMIC-IV-ED is a large, freely available database of emergency department (ED) admissions at the Beth Israel Deaconess Medical Center between 2011 and 2019. The database contains ~425,000 ED stays. Vital signs, triage information, medication reconciliation, medication administration, and discharge diagnoses are available. All data are deidentified to comply with the Health Information Portability and Accountability Act (HIPAA) Safe Harbor provision. MIMIC-IV-ED is intended to support a diverse range of education initiatives and research studies.

  14. d

    Data from: Assessing the use of HL7 FHIR for implementing the FAIR guiding...

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philip van Damme; Matthias Löbe; Nirupama Benis; Nicolette de Keizer; Ronald Cornet (2025). Assessing the use of HL7 FHIR for implementing the FAIR guiding principles: A case study of the MIMIC-IV emergency department module [Dataset]. http://doi.org/10.5061/dryad.1jwstqk10
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Philip van Damme; Matthias Löbe; Nirupama Benis; Nicolette de Keizer; Ronald Cornet
    Time period covered
    Jan 1, 2023
    Description

    Objective To assess the use of Health Level Seven Fast Healthcare Interoperability Resources (FHIR®) for implementing the Findable, Accessible, Interoperable, and Reusable guiding principles for scientific data (FAIR). Additionally, present a list of FAIR implementation choices for supporting future FAIR implementations that use FHIR. Material and Methods A case study was conducted on the Medical Information Mart for Intensive Care-IV Emergency Department dataset (MIMIC-ED), a deidentified clinical dataset converted into FHIR. The FAIRness of this dataset was assessed using a set of common FAIR assessment indicators. Results The FHIR distribution of MIMIC-ED, comprising an implementation guide and demo data, was more FAIR compared to the non-FHIR distribution. The FAIRness score increased from 60 to 82 out of 95 points, a relative improvement of 37%. The most notable improvements were observed in interoperability, with a score increase from 5 to 19 out of 19 points, and reusability, wit..., The authors of the paper collected the dataset. , Microsoft Word (.docx files) or Microsoft Excel (.csv files) (Open-source alternatives: LibreOffice, OpenOffice) The data files (.csv) can also be opened using any text editor, R, etc., # FAIR Indicator Scores and Qualitative Comments

    This dataset belongs as supplementary material to the paper entitled "Assessing the Use of HL7 FHIR for Implementing the FAIR Guiding Principles: A Case Study of the MIMIC-IV Emergency Department Module".

    Description of the data and file structure

    This dataset describes the indicator scores and qualitative comments of the FAIR data assessment of the Medical Information Mart for Intensive Care (MIMIC)-IV Emergency Department Module. Two distributions of the Emergency Department module were assessed, the PhysioNet distribution and the Fast Healthcare Interoperability Resources (FHIR) distribution. This dataset consists of two files: (1) PhysioNet.csv containing the data of the PhysioNet distribution; and (2) FHIR.csv containing the data of the FHIR distribution. Both files share the same structure and fields.

    • Indicator ID: an ID corresponding to the IDs listed in Table 1 of the paper, which refer to a Research Data Alliance FAIR ...
  15. m

    MIMIC Research

    • data.mendeley.com
    Updated Sep 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivia Bernas (2017). MIMIC Research [Dataset]. http://doi.org/10.17632/3jbxrzrrsv.1
    Explore at:
    Dataset updated
    Sep 28, 2017
    Authors
    Olivia Bernas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Published studies using the MIMIC database

  16. MRI Tissue Mimics Data

    • data.nist.gov
    • catalog.data.gov
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2023). MRI Tissue Mimics Data [Dataset]. http://doi.org/10.18434/mds2-3063
    Explore at:
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    License

    https://www.nist.gov/open/licensehttps://www.nist.gov/open/license

    Description

    Database of MRI quantitative measurements gathered from literature and experimental studies, for tissues and synthetic materials.Additionally, a code base is provided to aid in finding MRI tissue relaxation times for a target field strength, and to provide functionality to solve for tissue mimic composition given target tissue relaxation times.

  17. f

    Atrial Fibrillation annotations of electrocardiogram from MIMIC III matched...

    • figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syed Khairul Bashar (2023). Atrial Fibrillation annotations of electrocardiogram from MIMIC III matched subset [Dataset]. http://doi.org/10.6084/m9.figshare.12149091.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Syed Khairul Bashar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We provide some annotations of the Medical Information Mart for Intensive Care (MIMIC) III waveform database matched Subset. The annotations are for the electrocardiogram recordings and denote atrial fibrillation status.More annotations will be added in future.Details about MIMIC III matched subset can be found at Physionet.https://archive.physionet.org/physiobank/database/mimic3wdb/matched/If you use the annotations, please cite the following paper:Bashar, S.K., Ding, E., Walkey, A.J., McManus, D.D. and Chon, K.H., 2019. Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. IEEE Access, 7, pp.88357-88368

  18. Data from: Assessment of Non-Invasive Blood Pressure Prediction from PPG and...

    • zenodo.org
    bin
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Schrumpf; Patrick Frenzel; Christoph Aust; Georg Osterhoff; Mirco Fuch; Fabian Schrumpf; Patrick Frenzel; Christoph Aust; Georg Osterhoff; Mirco Fuch (2021). Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning [Dataset]. http://doi.org/10.5281/zenodo.5590603
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fabian Schrumpf; Patrick Frenzel; Christoph Aust; Georg Osterhoff; Mirco Fuch; Fabian Schrumpf; Patrick Frenzel; Christoph Aust; Georg Osterhoff; Mirco Fuch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is a subset of the MIMIC-III dataset used for non-invasive blood pressure prediction. PPG and ABP data were divided into windows of 7s length (875 data points). Systolic and diastolic blood pressure values were derived from the ABP windows. Each sample of the dataset consists of a PPG signal and blood pressure values as well as a unique subject identifier. The file consists of three datasets:

    • PPG: PPG data of size 905,400 x 875
    • label: BP data of size 905,400 x 2
    • subject_idx: subject affiliation of each sample (size 905,400 x 1)

    Furthermore, this submission contains the following models:

    • AlexNet
    • ResNet50
    • LSTM
    • Architecture published by Slapnicar et al. 2019

    The architectures were trained using a non-mixed dataset derived from the MIMIC-III waveform database. Samples were divided between training, validation and test set based on their subject affiliation preventing contamination of validation and test sets with samples from subjects used for training.

  19. f

    Data_Sheet_1_Machine Learning Prediction Models for Mechanically Ventilated...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Jul 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zheng, Hua; Guo, Junyang; Zhu, Yibing; Chen, Yan; Chen, Ge; Xi, Xiuming; Li, Wei; Li, Yang; Jin, Xin; Wang, Guowei; Ren, Chao; Guo, Qianqian; Liu, Shi; Du, Bin; Huang, Huibin; Yu, Qian; Zhang, Jin; Li, Lin; Yao, Renqi (2021). Data_Sheet_1_Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000884385
    Explore at:
    Dataset updated
    Jul 1, 2021
    Authors
    Zheng, Hua; Guo, Junyang; Zhu, Yibing; Chen, Yan; Chen, Ge; Xi, Xiuming; Li, Wei; Li, Yang; Jin, Xin; Wang, Guowei; Ren, Chao; Guo, Qianqian; Liu, Shi; Du, Bin; Huang, Huibin; Yu, Qian; Zhang, Jin; Li, Lin; Yao, Renqi
    Description

    Background: Mechanically ventilated patients in the intensive care unit (ICU) have high mortality rates. There are multiple prediction scores, such as the Simplified Acute Physiology Score II (SAPS II), Oxford Acute Severity of Illness Score (OASIS), and Sequential Organ Failure Assessment (SOFA), widely used in the general ICU population. We aimed to establish prediction scores on mechanically ventilated patients with the combination of these disease severity scores and other features available on the first day of admission.Methods: A retrospective administrative database study from the Medical Information Mart for Intensive Care (MIMIC-III) database was conducted. The exposures of interest consisted of the demographics, pre-ICU comorbidity, ICU diagnosis, disease severity scores, vital signs, and laboratory test results on the first day of ICU admission. Hospital mortality was used as the outcome. We used the machine learning methods of k-nearest neighbors (KNN), logistic regression, bagging, decision tree, random forest, Extreme Gradient Boosting (XGBoost), and neural network for model establishment. A sample of 70% of the cohort was used for the training set; the remaining 30% was applied for testing. Areas under the receiver operating characteristic curves (AUCs) and calibration plots would be constructed for the evaluation and comparison of the models' performance. The significance of the risk factors was identified through models and the top factors were reported.Results: A total of 28,530 subjects were enrolled through the screening of the MIMIC-III database. After data preprocessing, 25,659 adult patients with 66 predictors were included in the model analyses. With the training set, the models of KNN, logistic regression, decision tree, random forest, neural network, bagging, and XGBoost were established and the testing set obtained AUCs of 0.806, 0.818, 0.743, 0.819, 0.780, 0.803, and 0.821, respectively. The calibration curves of all the models, except for the neural network, performed well. The XGBoost model performed best among the seven models. The top five predictors were age, respiratory dysfunction, SAPS II score, maximum hemoglobin, and minimum lactate.Conclusion: The current study indicates that models with the risk of factors on the first day could be successfully established for predicting mortality in ventilated patients. The XGBoost model performs best among the seven machine learning models.

  20. S1 File.

    • figshare.com
    xlsx
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    剑 邓 (2025). S1 File. [Dataset]. http://doi.org/10.6084/m9.figshare.28631465.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    剑 邓
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data used for research.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alistair Johnson; Tom Pollard; Roger Mark (2016). MIMIC-III Clinical Database [Dataset]. http://doi.org/10.13026/C2XW26

MIMIC-III Clinical Database

Explore at:
Dataset updated
Sep 4, 2016
Authors
Alistair Johnson; Tom Pollard; Roger Mark
License

https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

Description

MIMIC-III is a large, freely-available database comprising deidentified health-related data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes information such as demographics, vital sign measurements made at the bedside (~1 data point per hour), laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality (including post-hospital discharge).MIMIC supports a diverse range of analytic studies spanning epidemiology, clinical decision-rule improvement, and electronic tool development. It is notable for three factors: it is freely available to researchers worldwide; it encompasses a diverse and very large population of ICU patients; and it contains highly granular data, including vital signs, laboratory results, and medications.

Search
Clear search
Close search
Google apps
Main menu