Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Medical Information Mart for Intensive Care (MIMIC)-IV database is comprised of deidentified electronic health records for patients admitted to the Beth Israel Deaconess Medical Center. Access to MIMIC-IV is limited to credentialed users. Here, we have provided an openly-available demo of MIMIC-IV containing a subset of 100 patients. The dataset includes similar content to MIMIC-IV, but excludes free-text clinical notes. The demo may be useful for running workshops and for assessing whether the MIMIC-IV is appropriate for a study before making an access request.
MIMIC-IV ICD-10 contains 122,279 discharge summaries—free-text medical documents—annotated with ICD-10 diagnosis and procedure codes. It contains data for patients admitted to the Beth Israel Deaconess Medical Center emergency department or ICU between 2008-2019. All codes with fewer than ten examples have been removed, and the train-val-test split was created using multi-label stratified sampling. The dataset is described further in Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study, and the code to use the dataset is found here.
The dataset is intended for medical code prediction and was created using MIMIC-IV v2.2 and MIMIC-IV-NOTE v2.2. Using the two datasets requires a license obtained in Physionet; this can take a couple of days.
https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
The advent of large, open access text databases has driven advances in state-of-the-art model performance in natural language processing (NLP). The relatively limited amount of clinical data available for NLP has been cited as a significant barrier to the field's progress. Here we describe MIMIC-IV-Note: a collection of deidentified free-text clinical notes for patients included in the MIMIC-IV clinical database. MIMIC-IV-Note contains 331,794 deidentified discharge summaries from 145,915 patients admitted to the hospital and emergency department at the Beth Israel Deaconess Medical Center in Boston, MA, USA. The database also contains 2,321,355 deidentified radiology reports for 237,427 patients. All notes have had protected health information removed in accordance with the Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor provision. All notes are linkable to MIMIC-IV providing important context to the clinical data therein. The database is intended to stimulate research in clinical natural language processing and associated areas.
The MIMIC-IV-ECG module contains approximately 800,000 diagnostic electrocardiograms across nearly 160,000 unique patients. These diagnostic ECGs use 12 leads and are 10 seconds in length. They are sampled at 500 Hz. This subset contains all of the ECGs for patients who appear in the MIMIC-IV Clinical Database. When a cardiologist report is available for a given ECG, we provide the needed information to link the waveform to the report. The patients in MIMIC-IV-ECG have been matched against the MIMIC-IV Clinical Database, making it possible to link to information across the MIMIC-IV modules.
đź‘‚đź’‰ EHRSHOT is a dataset for benchmarking the few-shot performance of foundation models for clinical prediction tasks. EHRSHOT contains de-identified structured data (e.g., diagnosis and procedure codes, medications, lab values) from the electronic health records (EHRs) of 6,739 Stanford Medicine patients and includes 15 prediction tasks. Unlike MIMIC-III/IV and other popular EHR datasets, EHRSHOT is longitudinal and includes data beyond ICU and emergency department patients.
⚡️Quickstart 1. To recreate the original EHRSHOT paper, download the EHRSHOT_ASSETS.zip file from the "Files" tab 2. To work with OMOP CDM formatted data, download all the tables in the "Tables" tab
⚙️ Please see the "Methodology" section below for details on the dataset and downloadable files.
1. đź“– Overview
EHRSHOT is a benchmark for evaluating models on few-shot learning for patient classification tasks. The dataset contains:
%3C!-- --%3E
2. đź’˝ Dataset
EHRSHOT is sourced from Stanford’s STARR-OMOP database.
%3C!-- --%3E
We provide two versions of the dataset:
%3C!-- --%3E
To access the raw data, please see the "Tables" and "Files"** **tabs above:
3. đź’˝ Data Files and Formats
We provide EHRSHOT in two file formats:
%3C!-- --%3E
Within the "Tables" tab...
1. %3Cu%3EEHRSHOT-OMOP%3C/u%3E
* Dataset Version: EHRSHOT-OMOP
* Notes: Contains all OMOP CDM tables for the EHRSHOT patients. Note that this dataset is slightly different than the original EHRSHOT dataset, as these tables contain the full OMOP schema rather than a filtered subset.
Within the "Files" tab...
1. %3Cu%3EEHRSHOT_ASSETS.zip%3C/u%3E
* Dataset Version: EHRSHOT-Original
* Data Format: FEMR 0.1.16
* Notes: The original EHRSHOT dataset as detailed in the paper. Also includes model weights.
2. %3Cu%3EEHRSHOT_MEDS.zip%3C/u%3E
* Dataset Version: EHRSHOT-Original
* Data Format: MEDS 0.3.3
* Notes: The original EHRSHOT dataset as detailed in the paper. It does not include any models.
3. %3Cu%3EEHRSHOT_OMOP_MEDS.zip%3C/u%3E
* Dataset Version: EHRSHOT-OMOP
* Data Format: MEDS 0.3.3 + MEDS-ETL 0.3.8
* Notes: Converts the dataset from EHRSHOT-OMOP into MEDS format via the `meds_etl_omop`command from MEDS-ETL.
4. %3Cu%3EEHRSHOT_OMOP_MEDS_Reader.zip%3C/u%3E
* Dataset Version: EHRSHOT-OMOP
* Data Format: MEDS Reader 0.1.9 + MEDS 0.3.3 + MEDS-ETL 0.3.8
* Notes: Same data as EHRSHOT_OMOP_MEDS.zip, but converted into a MEDS-Reader database for faster reads.
4. 🤖 Model
We also release the full weights of **CLMBR-T-base, **a 141M parameter clinical foundation model pretrained on the structured EHR data of 2.57M patients. Please download from https://huggingface.co/StanfordShahLab/clmbr-t-base
**5. 🧑‍💻 Code **
Please see our Github repo to obtain code for loading the dataset and running a set of pretrained baseline models: https://github.com/som-shahlab/ehrshot-benchmark/
**NOTE: You must authenticate to Redivis using your formal affiliation's email address. If you use gmail or other personal email addresses, you will not be granted access. **
Access to the EHRSHOT dataset requires the following:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains part 4/7 of the full dataset used for the models of the preprint "Can AI be enabled to dynamical downscaling? Training a Latent Diffusion Model to mimic km-scale COSMO-CLM downscaling of ERA5 over Italy".
This dataset comprises 3 years of normalized hourly data for both low-resolution predictors [16 km] and high-resolution target variables [2km] (2mT and 10-m U and V), from 2009-2011. Low-resolution data are preprocessed ERA5 data while high-resolution data are preprocessed VHR-REA CMCC data. Details on the performed preprocessing are available in the paper.
To use the data, clone the corresponding repository, unzip this zip file in the data folder, and download from Zenodo the other parts of the dataset listed in the related works.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Medical Information Mart for Intensive Care (MIMIC)-IV database is comprised of deidentified electronic health records for patients admitted to the Beth Israel Deaconess Medical Center. Access to MIMIC-IV is limited to credentialed users. Here, we have provided an openly-available demo of MIMIC-IV containing a subset of 100 patients. The dataset includes similar content to MIMIC-IV, but excludes free-text clinical notes. The demo may be useful for running workshops and for assessing whether the MIMIC-IV is appropriate for a study before making an access request.