Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed by under the Small Hydropower Mapping and Improved Geospatial Electrification Planning in Indonesia Project [Project ID: P145273]. The scope of the project was to facilitate and improve the planning and investment process for small hydro development both grid and isolated systems through: building up a central database on smal hydro at national scale and validating the mapping of small hydro in NTT, Maluku, Maluku Utara and Sulawesi improved electrification planning by integrating small hydro potential for the provinces of NTT, Maluku, Maluku Utara and Sulawesi into the planning process. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_indonesia The GIS database contains the following datasets: SHP(promising sites) Admin Divisions Topomas_grid Rivers, Geology Forest_areas Roads RainfallGauges RunoffGauges ElectricSystem, each accompanied by a metadata file. Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Indonesia Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/indonesia-small-hydro-gis-database-2017"
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed under the project "Renewable Energy Mapping: Small Hydro Tanzania". This study is part of a technical assistance project, ESMAP funded, being implemented by Africa Energy Practice of the World Bank in Tanzania which aims at supporting resource mapping and geospatial planning for small hydro. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_TNZ The GIS database contains the following datasets: Administrative Boundaries Hydrology Protected Areas Satellite Imagery Land Cover Geology Topography Population Infrastructure: Power/ Transport each accompanied by a metadata file Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Tanzania Small Hydro GIS Atlas, 2018, https://energydata.info/dataset/tanzania-small-hydro-gis-database-2018"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS HydroAtlas of Madagascar is the final output from the small hydro resource mapping component of the activity “ Renewable Energy Resource Mapping and Geospatial Planning – Madagascar” [Project ID: P145350]. You can find more information about the project here: https://www.esmap.org/re_mapping_madagascar Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Madagascar Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/madagscar-small-hydro-gis-atlas-2017"
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments.
The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments.
The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Locations within the City of Boston of all small cell antenna/DAS approved by the City prior to 01/01/2017
Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Layer includes geocoded point locations and Administrative contact information for state smalls, collected by the Needs Analysis Unit as of 9/22/21. This information was collected as part of SB200 requirements for counties to submit state small water system location information. This layer also includes water quality risk estimates from the 2022 Aquifer Risk Map. The risk estimates are not based on samples collected directly from each state small water system, but reflect the average water quality of the raw source groundwater nearby. This data collection is ongoing and this layer will be updated/obsolete in a few months when the information will be included in SDWIS records.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
CDFW BIOS GIS Dataset, Contact: Melanie Gogol-Prokurat, Description: CWHR Predicted Habitat Suitability. This dataset represents areas of suitable habitat within the species ranges based on California Wildlife Habitat Relationships (CWHR 2016) and a statewide best-available vegetation map (FVEG2015, FRAP 2015).
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Cloud GIS Market size was valued at USD 890.81 Million in 2023 and is projected to reach USD 2298.38 Million by 2031, growing at a CAGR of 14.5% from 2024 to 2031.
Key Market Drivers
• Increased Adoption of Cloud Computing: Cloud computing provides scalable resources that can be adjusted based on demand, making it easier for organizations to manage and process large GIS datasets. The pay-as-you-go pricing models of cloud services reduce the need for significant upfront investments in hardware and software, making GIS more accessible to small and medium-sized enterprises.
• Growing Need for Spatial Data Integration: The ability to integrate and analyze large volumes of spatial and non-spatial data helps organizations make more informed decisions. The proliferation of Internet of Things (IoT) devices generates massive amounts of spatial data that can be processed and analyzed using Cloud GIS.
• Advancements in GIS Technology: User-friendly interfaces and visualization tools make it easier for non-experts to use GIS applications. Advanced analytical tools and machine learning algorithms available in cloud platforms enhance the capabilities of traditional GIS.
• Increased Demand for Real-Time Data: Industries like disaster management, transportation, and logistics require real-time data processing and analysis, which is facilitated by Cloud GIS. The need for up-to-date maps and spatial data drives the adoption of cloud-based GIS solutions.
• Collaboration and Sharing Needs: The ability to access GIS data and collaborate from anywhere enhances productivity and supports remote work environments. Cloud GIS supports simultaneous access by multiple users, facilitating better teamwork and data sharing.
• Urbanization and Smart Cities Initiatives: Cloud GIS is crucial for smart city initiatives, urban planning, and infrastructure development, providing the tools needed for efficient resource management. Supports planning and monitoring of sustainable development projects by providing comprehensive spatial analysis capabilities.
• Government and Policy Support: Increased government investment in geospatial technologies and smart infrastructure projects drives the adoption of Cloud GIS. Compliance with regulatory requirements for environmental monitoring and land use planning necessitates the use of advanced GIS tools.
• Industry-Specific Applications: Precision farming and land management benefit from the advanced analytics and data integration capabilities of Cloud GIS. Epidemiology and public health monitoring rely on spatial data analysis for tracking disease outbreaks and resource allocation.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Small Craft Centers dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed by under the Small Hydropower Mapping and Improved Geospatial Electrification Planning in Indonesia Project [Project ID: P145273]. The scope of the project was to facilitate and improve the planning and investment process for small hydro development both grid and isolated systems through: building up a central database on smal hydro at national scale and validating the mapping of small hydro in NTT, Maluku, Maluku Utara and Sulawesi improved electrification planning by integrating small hydro potential for the provinces of NTT, Maluku, Maluku Utara and Sulawesi into the planning process. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_indonesia The GIS database contains the following datasets: SHP(promising sites) Admin Divisions Topomas_grid Rivers, Geology Forest_areas Roads RainfallGauges RunoffGauges ElectricSystem, each accompanied by a metadata file. Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Indonesia Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/indonesia-small-hydro-gis-database-2017"