2 datasets found
  1. c

    Mammographic Image Analysis Society (MIAS) database v1.21

    • repository.cam.ac.uk
    zip
    Updated Aug 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suckling, John; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; Taylor, P.; Betal, D.; Savage, J. (2015). Mammographic Image Analysis Society (MIAS) database v1.21 [Dataset]. http://doi.org/10.17863/CAM.105113
    Explore at:
    zip(1617327652 bytes)Available download formats
    Dataset updated
    Aug 28, 2015
    Dataset provided by
    University of Cambridge
    Apollo
    Authors
    Suckling, John; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; Taylor, P.; Betal, D.; Savage, J.
    License

    Attribution 2.0 (CC BY 2.0)https://creativecommons.org/licenses/by/2.0/
    License information was derived automatically

    Description

    The Mammographic Image Analysis Society database of digital mammograms (v1.21). Contains the original 322 images (161 pairs) at 50 micron resolution in "Portable Gray Map" (PGM) format and associated truth data.

  2. Data from: A novel cascade classifier for automatic microcalcification...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, txt, zip
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seung Yeon Shin; Soochahn Lee; Il Dong Yun; Ho Yub Jung; Yong Seok Heo; Sun Mi Kim; Kyoung Mu Lee; Seung Yeon Shin; Soochahn Lee; Il Dong Yun; Ho Yub Jung; Yong Seok Heo; Sun Mi Kim; Kyoung Mu Lee (2022). Data from: A novel cascade classifier for automatic microcalcification detection [Dataset]. http://doi.org/10.5061/dryad.jm6k3
    Explore at:
    zip, bin, txtAvailable download formats
    Dataset updated
    May 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Seung Yeon Shin; Soochahn Lee; Il Dong Yun; Ho Yub Jung; Yong Seok Heo; Sun Mi Kim; Kyoung Mu Lee; Seung Yeon Shin; Soochahn Lee; Il Dong Yun; Ho Yub Jung; Yong Seok Heo; Sun Mi Kim; Kyoung Mu Lee
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    In this paper, we present a novel cascaded classification framework for automatic detection of individual and clusters of microcalcifications (μC). Our framework comprises three classification stages: i) a random forest (RF) classifier for simple features capturing the second order local structure of individual μCs, where non-μC pixels in the target mammogram are efficiently eliminated; ii) a more complex discriminative restricted Boltzmann machine (DRBM) classifier for μC candidates determined in the RF stage, which automatically learns the detailed morphology of μC appearances for improved discriminative power; and iii) a detector to detect clusters of μCs from the individual μC detection results, using two different criteria. From the two-stage RF-DRBM classifier, we are able to distinguish μCs using explicitly computed features, as well as learn implicit features that are able to further discriminate between confusing cases. Experimental evaluation is conducted on the original Mammographic Image Analysis Society (MIAS) and mini-MIAS databases, as well as our own Seoul National University Bundang Hospital digital mammographic database. It is shown that the proposed method outperforms comparable methods in terms of receiver operating characteristic (ROC) and precision-recall curves for detection of individual μCs and free-response receiver operating characteristic (FROC) curve for detection of clustered μCs.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Suckling, John; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; Taylor, P.; Betal, D.; Savage, J. (2015). Mammographic Image Analysis Society (MIAS) database v1.21 [Dataset]. http://doi.org/10.17863/CAM.105113

Mammographic Image Analysis Society (MIAS) database v1.21

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
zip(1617327652 bytes)Available download formats
Dataset updated
Aug 28, 2015
Dataset provided by
University of Cambridge
Apollo
Authors
Suckling, John; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; Taylor, P.; Betal, D.; Savage, J.
License

Attribution 2.0 (CC BY 2.0)https://creativecommons.org/licenses/by/2.0/
License information was derived automatically

Description

The Mammographic Image Analysis Society database of digital mammograms (v1.21). Contains the original 322 images (161 pairs) at 50 micron resolution in "Portable Gray Map" (PGM) format and associated truth data.

Search
Clear search
Close search
Google apps
Main menu